(完整版)人教版八年级上数学培优精编讲义教师版.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)人教版八年级上数学培优精编讲义教师版.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 人教版八 年级 数学 精编 讲义 教师版 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、第十一章 全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。2. 全等三角形的表示方法:若ABC和ABC是全等的三角形,记作 “ABCABC其中,“”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写
2、在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。翻折 如图(1),DBOCDEOD,DBOC可以看成是由DEOD沿直线AO翻折180得到的;旋转 如图(2),DCODDBOA,DCOD可以看成是由DBOA绕着点O旋转180得到的;平移 如图(3),DDEFDACB,DDEF可以看成是由DACB沿CB方向平行移动而得到的。5. 判定三角形全等
3、的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2) 推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。【分类解析】全等三角形知识的应用(1) 证明线段(或角)相等【例1】如图,已知AD=AE,AB=AC.求证:BF=FC分析:由已知条件可证出ACDABE,
4、而BF和FC分别位于DBF和EFC中,因此先证明ACDABE,再证明DBFECF,既可以得到BF=FC.证明:在ACD和ABE中, ACDABE (SAS) B=C(全等三角形对应角相等)又 AD=AE,AB=AC. ABAD=ACAE 即 BD=CE在DBF和ECF中 DBFECF (AAS) BF=FC (全等三角形对应边相等)(2)证明线段平行【例2】已知:如图,DEAC,BFAC,垂足分别为E、F,DE=BF,AF=CE.求证:ABCD分析:要证ABCD,需证CA,而要证CA,又需证ABFCDE.由已知BFAC,DEAC,知DECBFA=90,且已知DE=BF,AF=CE.显然证明AB
5、FCDE条件已具备,故可先证两个三角形全等,再证CA,进一步证明ABCD.证明: DEAC,BFAC (已知) DECBFA=90 (垂直的定义)在ABF与CDE中, ABFCDE(SAS) CA (全等三角形对应角相等) ABCD (内错角相等,两直线平行)(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等【例3】如图,在 ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE分析:()折半法:取CD中点F,连接BF,再证CEBCFB.这里注意利用BF是ACD中位线这个条件。证明:取CD中点F,连接BF BF=AC,且B
6、FAC (三角形中位线定理) ACB2 (两直线平行内错角相等)又 AB=AC ACB3 (等边对等角) 32在CEB与CFB中, CEBCFB (SAS) CE=CF=CD (全等三角形对应边相等)即CD=2CE ()加倍法证明:延长CE到F,使EF=CE,连BF.在AEC与BEF中,AECBEF (SAS) AC=BF, 43 (全等三角形对应边、对应角相等) BFAC (内错角相等两直线平行) ACB+CBF=180o,ABC+CBD=180o,又AB=AC ACB=ABCCBF=CBD (等角的补角相等)在CFB与CDB中, CFBCDB (SAS) CF=CD即CD=2CE说明:关于
7、折半法有时不在原线段上截取一半,而利用三角形中位线得到原线段一半的线段。例如上面折道理题也可这样处理,取AC中点F,连BF(如图)(B为AD中点是利用这个办法的重要前提),然后证CE=BF.(4)证明线段相互垂直【例4】已知:如图,A、D、B三点在同一条直线上,ADC、BDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。分析:本题没有直接给出待证的结论,而是让同学们先根据已知条件推断出结论,然后再证明所得出的结论正确。通过观察,可以猜测:AO=BC,AOBC.证明:延长AO交BC于E,在ADO和CDB中 ADOCDB (SAS) AO=BC, OAD=BCD(全等三角形对
8、应边、对应角相等) AODCOE (对顶角相等) COE+OCE=90o AOBC5、中考点拨:【例1】如图,在ABC中,ABAC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DFDE,连结FC求证:FA分析:证明两个角相等,常证明这两个角所在的两个三角形全等,在已知图形中A、F不在全等的两个三角形中,但由已知可证得EFAC,因此把A通过同位角转到BDE中的BED,只要证EBDFCD即可证明:ABAC,ACBB,EBED,ACBEDBEDACBEDABEEABDCD又DEDF,BDECDFBDECDF,BEDFFA说明:证明角(或线段)相等可以从证
9、明角(或线段)所在的三角形全等入手,在寻求全等条件时,要注意结合图形,挖掘图中存在的对项角、公共角、公共边、平行线的同位角、内错角等相等的关系。【例2】如图,已知 ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=ED 分析:把已知条件标注在图上,需构造和AEC全等的三角形,因此过D点作DFAC交BE于F点,证明AECFED即可。证明:过D点作DFAC交BE于F点 ABC为等边三角形 BFD为等边三角形 BF=BD=FD AE=BD AE=BF=FD AEAF=BFAF 即 EF=AB EF=AC在 ACE和DFE中, AECFED(SAS) EC=
10、ED(全等三角形对应边相等)题型展示:【例1】如图,ABC中,C2B,12。求证:ABACCD分析:在AB上截取AEAC,构造全等三角形,AEDACD,得DEDC,只需证DEBE问题便可以解决证明:在AB上截取AEAC,连结DE AEAC,12,ADAD, AEDACD, DEDC,AEDC AEDBEDB,C2B, 2BBEDB即 BEDB EBED,即EDDC, ABACDC剖析:证明一条线段等于另外两条线段之和的常用方法有两种,一种是截长法(即在长线段上截取一段等于两条短线段的一条,再证余下的部分等于另一条短线段);如作AEAC是利用了角平分线是角的对称轴的特性,构造全等三角形,另一种方
11、法是补短法(即延长一条短线段等于长线段,再证明延长的部分与另一条短线段相等),其目的是把证明线段的和差转化为证明线段相等的问题,实际上仍是构造全等三角形,这种转化图形的能力是中考命题的重点考查的内容【实战模拟】1. 下列判断正确的是( )(A)有两边和其中一边的对角对应相等的两个三角形全等(B)有两边对应相等,且有一角为30的两个等腰三角形全等(C)有一角和一边对应相等的两个直角三角形全等(D)有两角和一边对应相等的两个三角形全等2. 已知:如图,CDAB于点D,BEAC于点E,BE、CD交于点O,且AO平分BAC求证:OBOC3. 如图,已知C为线段AB上的一点,DACM和DCBN都是等边三
12、角形,AN和CM相交于F点,BM和CN交于E点。求证:DCEF是等边三角形。4.如图,在ABC中,AD为BC边上的中线。求证:ADAC,的平分线与BC的垂直平分线相交于D,自D作于E,求证:BF=CG。1、轴对称的性质:()关于某条直线对称的图形是全等形;()如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;()两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;()如果两个图形的对应点连线被同一直线垂直平分,那么,这两个图形关于这条直线对称。2、轴对称作(画)图:()画图形的对称轴()如果一个图形关于某直线对称,那么对称点之间的线段的垂直平分线就是该图
13、形的对称轴。()画某点关于某直线的对称点的方法()画已知图形关于某直线的对称图形注意:()全等的图形不一定是轴对称的,轴对称的图形一定是全等的。()性质()的作用是判定两个图形是否关于某直线对称,它是作对对称图形的主要依据。【例8】如图,ABC和ABC关于直线对称,下列结论中:ABCABC;BACBAC;l垂直平分CC;直线BC和BC的交点不一定在l上,正确的有( )A4个 B3个 C2个 D1个举一反三:1、如图,ABC与A/B/C/关于直线l对称,则B的度数为( )FEDCBAA50 B30 C100 D902、如图六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若AFC+BC
展开阅读全文