(完整版)三角形中位线教学设计.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)三角形中位线教学设计.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 三角形 中位线 教学 设计
- 资源描述:
-
1、三角形中位线教学设计文登二中主备人:张梅参与人:于燕华邢妍妍 课题三角形的中位线教 材 分 析三角形中位线是既三角形中线、高线、角平分线之后与三角形有关的又一条的重要线段,中位线性质定理是揭示了中位线与第三边的的位置和数量关系,是全等三角形、平行四边形、中心对称等知识的应用和深化,同时也是学习梯形中位线的基础。定理的探索与证明过程又是发展学生探究能力的良好素材。通过经历和体验知识的形成过程,感受数学发现的乐趣,提升学习的内在动力。教学目标知识与能力目标:探索并掌握三角形中位线的概念,性质,会利用性质解决有关问题。过程与方法目标:经历探索三角形中位线性质的过程,进一步发展学生观察,猜想,归纳,反
2、思,交流等方面的能力,体会转化的数学思想。情感与态度目标:通过拼图活动、自主学习、合作交流让学生感受到探究的乐趣,增强学习数学的兴趣,树立学好数学的信心。教学重点探索三角形中位线的性质和运用其性质解决相关问题。教学难点三角形中位线定理的证明及应用。教学方法为使学生更好地构建新的认知体系,促进学生的发展,从教法和学法上我将主要突出以下几点:1.“动”学生动口说,动手做,动脑想,亲身经历知识发生发展的过程。2.“探”引导学生自主学习、探索交流,是本节课突出重点、突破难点的关键。3,“渗”在整个教学过程中,始终渗透用转化思想解决数学问题。教师活动学生活动设计意图一 问题引领,启动思维(多媒体展示):
3、探索1:给你一个任意的三角形,能否只剪一刀,就能将剪开的图形拼成一个平行四边形?请小组合作探究。探索2:猜想得出平行四边形后,该如何证明?学生交流完后教师再利用课件演示拼法师:很好,其实上面这位同学的剪法剪出了三角形一个很有用的定义,那就是三角形的中位线。板书课题:三角形的中位线二任务驱动 自主探究活动一:学习三角形中位线的定义1提出要求:自学课本91页,完成导学案内容:用两种不同颜色的笔分别画出三角形ABC所有的中位线及中线,然后回答下列问题:(1)三角形的中位线是连接三角形 A的线段,一个三角形中有 条中位线。BC(2)D、E分别为AB、AC的中点 DE为ABC的中位线 ABCD(3)三角
4、形的中线是连接三角形 与 的线段 (4)三角形中线的性质: 2.、指导学生按导学案要求自学;3.、深入小组指导。4.、检查学生自学的效果, 活动二:探究三角形中位线的性质1.猜想验证,合作交流(1) 提出活动要求:利用课前拼图游戏中的三角形纸片或刚才导学案上画出的三角形进行探索。独立思考探究,三角形中位线有哪些性质?(温馨提示:可从数量关系和位置关系分别探究)(2)教师以合作者的身份深入到学生中,了解学生的探究过程并适当予以指导(3)对学生的多种验证方法都给以充分肯定和鼓励2动态演示,验证猜想师:刚才大家都是在一个三角形中进行探究得出三角形中位线的性质,是不是所有的三角形中位线都有这样的性质,
5、请看几何画板的演示: B,C不动,拖动A点,D,E始终分别是AB,AC的中点,观察在演示过程中DE和BC的位置关系和数量关系,你发现了什么?A,B不动,拖动点C, D和E仍然始终是AB,AC的中点,观察DE和BC的位置关系和数量关系,你又能发现什么?3:推理证明,得出结论师:请大家思考一下,利用我们以前学习的几何知识通过说理能验证这个结论吗?在导学案上完成推理证明过程。先独立思考,然后小组交流。看哪个小组想出的证法多。(1)深入小组参与活动,倾听学生的交流,引导学生用转化的思想,借助全等将三角形转化为平行四边形,再利用平行四边形的知识说理验证。可根据学生探究的情况引导:证明线段间的和差倍分关系
6、常用的辅助线添加方法是什么?(2)要关注学生对证明思路和方法的掌握,对学生大胆探索出的新颖独特的证明思路和证明方法以充分肯定和鼓励,引导学生在与他人的交流中比较证明方法的异同(3)课件展示不同的辅助线添加方法(4)引导学生回思:上述证明方法2,3,4中主要运用了 的思想,将三角形 为平行四边形再来解决问题(2)证明线段间的和差倍分关系常用的辅助线是 总结得出:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。 几何语言:DE是ABC的中位线DEBC, (位置关系) DE=BC(数量关系)三反馈矫正,巩固提升A组:问题1,ABC中,DE是中位线, 若ADE=60,则B= ,为什么
7、? 若DE=8,则BC= , 为什么?ABCDE问题2:ABC中,D,E,F分别是三边中点,AB=6,BC=4,AC=3 DEF周长= DEF周长: ABC周长= DEF面积: ABC面积= 图中有 个平行四边形,这四个小三角形的大小关系是 AABCDEEFF回思:三角形的中位线定理用途: 证明线段间 的位置关系。 证明一条线段是另一条线段的 倍或 。 创造了一对 三角形,相似比是 教师深入到小组中,了解学生中存在的问题,进行指导。B组:(课本随堂1改编)如图所示:A,B两地被建筑物隔开,现在要测量出A,B两点间的距离,但又无法直接测量,怎么办?画出示意图。师:如果第一条中位线处恰好还有阻隔,
展开阅读全文