书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型(专题精选)初中数学圆的易错题汇编及答案.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5485564
  • 上传时间:2023-04-21
  • 格式:DOC
  • 页数:16
  • 大小:794.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(专题精选)初中数学圆的易错题汇编及答案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题 精选 初中 数学 易错题 汇编 答案 下载 _其它资料_数学_初中
    资源描述:

    1、(专题精选)初中数学圆的易错题汇编及答案一、选择题1“直角”在几何学中无处不在,下列作图作出的不一定是直角的是( )ABCD【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A中,做出了点A关于直线BC的对称点,则是直角.选项B中,AO为BC边上的高,则是直角.选项D中,是直径AB作对的圆周角,故是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键2如图,在平行四边形ABCD中,BDAD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A12BC

    2、D【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得ABD的度数,进而求得EOD的度数,那么一个阴影部分的面积=SABD-S扇形DOE-SBOE,算出后乘2即可【详解】连接OE,OFBD=12,AD:AB=1:2,AD=4 ,AB=8,ABD=30,SABD=412=24,S扇形= 两个阴影的面积相等,阴影面积= .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积3如图,在平面直角坐标系中,点P是以C(,)为圆心,1为半径的C上的一个动点,已知A(1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()A6B8C10D12【答案】C【解析】【

    3、分析】设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可【详解】设P(x,y),PA2(x+1)2+y2,PB2(x1)2+y2,PA2+PB22x2+2y2+22(x2+y2)+2,OP2x2+y2,PA2+PB22OP2+2,当点P处于OC与圆的交点上时,OP取得最值,OP的最小值为COCP312,PA2+PB2最小值为222+210故选:C【点睛】本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大4下列命题中,是假命题的是A任意多边形的外角和为B在和中,若,则C在一个三角形中,任

    4、意两边之差小于第三边D同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析【详解】解:A. 任意多边形的外角和为,是真命题;B. 在和中,若,则,根据HL,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义5如图,点I为ABC的内心,AB=4,AC=3,BC=2,将ACB平移使其顶点与I重合,则图中阴影部分的周长为()A4.5B4C3D2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI

    5、是CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长【详解】连接AI、BI,点I为ABC的内心,AI平分CAB,CAI=BAI,由平移得:ACDI,CAI=AID,BAI=AID,AD=DI,同理可得:BE=EI,DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键6如图,是的内接三角形,把绕圆心按逆时针方向旋转得到,点的对应点为点,则点,之间的距离是()A1BCD2【答案】A【解析】

    6、【分析】连接AD,构造ADB,由同弧所对应的圆周角相等和旋转的性质,证ADB和DBE全等,从而得到AD=BE=BC=1.【详解】如图,连接AD,AO,DO绕圆心按逆时针方向旋转得到,AB=DE,(同弧所对应的圆周角等于圆心角的一半),即,又DB=BD,(同弧所对应的圆周角相等),在ADB和DBE中ADBEBD(ASA),AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.7如图,以RtABC的直角边AB为直径作O交BC于点D,连接AD,若DAC30,DC1,则O的半径为( )A

    7、2BC2D1【答案】B【解析】【分析】先由圆周角定理知BDA=ADC=90,结合DAC=30,DC=1得AC=2DC=2,C=60,再由AB=ACtanC=2可得答案【详解】AB是O的直径,BDAADC90,DAC30,DC1,AC2DC2,C60,则在RtABC中,ABACtanC2,O的半径为,故选:B【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用8如图,AB是O的直径,点C是O上一点,点D在BA的延长线上,CD与O交于另一点E,DE=OB=2,D=20,则弧BC的长度为()ABCD【答案】A【解析】【分析】连接OE、OC,如图,根据等腰三

    8、角形的性质得到D=EOD=20,根据外角的性质得到CEO=D+EOD=40,根据等腰三角形的性质得到C=CEO=40,根据外角的性质得到BOC=C+D=60,根据求弧长的公式得到结论.【详解】解:连接OE、OC,如图,DE=OB=OE,D=EOD=20,CEO=D+EOD=40,OE=OC,C=CEO=40,BOC=C+D=60,的长度=,故选A.【点睛】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键9如图,已知AB是O的直径,CD是弦,且CDAB,BC=3,AC=4,则s

    9、inABD的值是()ABCD【答案】D【解析】【分析】由垂径定理和圆周角定理可证ABD=ABC,再根据勾股定理求得AB=5,即可求sinABD的值【详解】AB是O的直径,CDAB,弧AC=弧AD,ABD=ABC根据勾股定理求得AB=5,sinABD=sinABC=故选D【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念10如图,在中,将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( )ABCD【答案】C【解析】试题分析:ABC是直角三角形,ACB=90,A=30,BC=2,B=60,AC=BCcotA=2=2,AB=2BC

    10、=4,EDC是ABC旋转而成,BC=CD=BD=AB=2,B=60,BCD是等边三角形,BCD=60,DCF=30,DFC=90,即DEAC,DEBC,BD=AB=2,DF是ABC的中位线,DF=BC=2=1,CF=AC=2=,S阴影=DFCF=故选C考点:1.旋转的性质2.含30度角的直角三角形11如图,四边形ABCD是O的内接四边形,若BOD=86,则BCD的度数是() A86B94C107D137【答案】D【解析】【分析】【详解】解:BOD=86,BAD=862=43,BAD+BCD=180,BCD=180-43=137,即BCD的度数是137故选D【点睛】本题考查圆内接四边形的对角互补

    11、圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)12如图,是一块绿化带,将阴影部分修建为花圃.已知,阴影部分是的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).ABCD【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到ABC为直角三角形,于是得到ABC的内切圆半径=1,求得直角三角形的面积和圆的面积,即可得到结论【详解】解:AB=5,BC=4,AC=3,AB2=BC2+AC2,ABC为直角三角形,ABC的内切圆半径=1,SABC=ACBC=43=6,S圆=,小鸟落在花圃上的概率=

    12、,故选B【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.13如图,圆锥的底面半径为1,母线长为3,则侧面积为()A2B3C6D8【答案】B【解析】【分析】圆锥的侧面积=底面周长母线长2,把相应数值代入即可求解【详解】解:圆锥的侧面积为: 2133,故选:B【点睛】此题考查圆锥的计算,解题关键在于掌握运算公式.14如图,在菱形中,点是这个菱形内部或边上的一点,若以点,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )ABCD【答案】D【解析】【分析】分三种情形讨论若以边BC为底若以边PC为底若以边PB

    13、为底分别求出PD的最小值,即可判断【详解】解:在菱形ABCD中,ABC=60,AB=1,ABC,ACD都是等边三角形,若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;若以边PC为底,PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足PBC是等腰三角形,当点P在BD上时,PD最小,最小值为若以边PB为底,PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足PBC为等腰三角形,当点P与点D重合时

    14、,PD最小,显然不满足题意,故此种情况不存在; 上所述,PD的最小值为 故选D【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型15如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是( )cmA8B8C3D4【答案】D【解析】【分析】由题意可得翻转一次中心O经过的路线长就是1个半径为1,圆心角是90的弧长,然后进行计算即可解答【详解】解:正方形ABCD的边长为cm,对角线的一半1cm,则连续翻动8次后,正方形的中心O经过的路线长84故选:D【点睛】

    15、本题考查了弧长的计算,审清题意、确定点O的路线和长度是解答本题的关键16如图,AB是O的直径,AC是O的切线,OC交O于点D,若ABD24,则C的度数是()A48B42C34D24【答案】B【解析】【分析】根据切线的性质求出OAC,结合C42求出AOC,根据等腰三角形性质求出BBDO,根据三角形外角性质求出即可【详解】解:ABD24,AOC48,AC是O的切线,OAC90,AOC+C90,C904842,故选:B【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出AOC的度数,题目比较好,难度适中17如图,是的内接三角形,且,的直径交于点,则的度数为( )ABCD【答案】

    16、D【解析】【分析】连接OB,根据等腰三角形的性质得到A,从而根据圆周角定理得出BOC,再根据OB=OC得出OBC,即可得到OBE,再结合外角性质和对顶角即可得到AED的度数.【详解】解:连接OB,AB=AC,ABC=ACB=56,A=180-56-56=68=BOC,BOC=682=136,OB=OC,OBC=OCB=(180-136)2=22,OBE=EBC-OBC=56-22=34,AED=BEC=BOC-OBE=136-34=102.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到BOC的度数.18如图,若干全等正五边形排成环状图中所示

    17、的是前3个正五边形,则要完成这一圆环还需()个这样的正五边形A6B7C8D9【答案】B【解析】【分析】【详解】如图,多边形是正五边形, 内角是(5-2)180=108,O=180-(180-108)-(180-108)=36,36度圆心角所对的弧长为圆周长的,即10个正五边形能围城这一个圆环,所以要完成这一圆环还需7个正五边形.故选B.19如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A3mBmCmD4m【答案】C【解析】【分析】【详解】如图,由题意得:AP=3,AB=6, 在圆锥侧面展开图中 故小猫经过的最短距离是故选C.20如图,点A,B,C,D都在半径为2的O上,若OABC,CDA=30,则弦BC的长为()A4B2CD2【答案】B【解析】【分析】根据垂径定理得到CH=BH,根据圆周角定理求出AOB,根据正弦的定义求出BH,计算即可【详解】如图BC与OA相交于HOABC,CH=BH,AOB=2CDA=60,BH=OBsinAOB=,BC=2BH=2,故选D【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(专题精选)初中数学圆的易错题汇编及答案.doc
    链接地址:https://www.163wenku.com/p-5485564.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库