(完整)三角函数部分高考题(带答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整)三角函数部分高考题(带答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 三角函数 部分 考题 答案
- 资源描述:
-
1、22设的内角所对的边长分别为,且()求的值;()求的最大值解析:()在中,由正弦定理及可得即,则;()由得当且仅当时,等号成立,故当时,的最大值为.23.在中, ()求的值;()设的面积,求的长解:()由,得,由,得所以5分()由得,由()知,故,8分又,故,所以10分24.已知函数()的最小正周期为()求的值;()求函数在区间上的取值范围解:()因为函数的最小正周期为,且,所以,解得()由()得因为,所以,所以,因此,即的取值范围为25.求函数的最大值与最小值。【解】:由于函数在中的最大值为 最小值为 故当时取得最大值,当时取得最小值26.知函数()的最小值正周期是()求的值;()求函数的最
2、大值,并且求使取得最大值的的集合(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数的性质等基础知识,考查基本运算能力满分12分()解: 由题设,函数的最小正周期是,可得,所以()由()知,当,即时,取得最大值1,所以函数的最大值是,此时的集合为27.已知函数()求函数的最小正周期和图象的对称轴方程()求函数在区间上的值域解:(1) 由函数图象的对称轴方程为 (2)因为在区间上单调递增,在区间上单调递减,所以 当时,取最大值 1又 ,当时,取最小值所以 函数 在区间上的值域为28.已知函数f(x)为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为()美洲f()的值
3、;()将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.解:()f(x)2sin(-)因为f(x)为偶函数,所以对xR,f(-x)=f(x)恒成立,因此sin(-)sin(-).即-sincos(-)+cossin(-)=sincos(-)+cossin(-),整理得sincos(-)=0.因为0,且xR,所以cos(-)0.又因为0,故-.所以f(x)2sin(+)=2cos.由题意得故f(x)=2cos2x.因为()将f(x)的图象向右平移个个单位后,得到的图象,再将所得图象横坐标伸长到原
展开阅读全文