书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型(完整版)二次函数的最值问题.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5484257
  • 上传时间:2023-04-21
  • 格式:DOC
  • 页数:15
  • 大小:813KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)二次函数的最值问题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 二次 函数 问题
    资源描述:

    1、典型中考题(有关二次函数的最值)屠园实验 周前猛一、选择题1 已知二次函数y=a(x-1)2+b有最小值 1,则a与b之间的大小关( )A. ab D不能确定答案:C2当2xl时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为( )A、- B、 C、 D或-答案:C当2xl时,二次函数 y=-(x-m)2+m2+1有最大值4,二次函数在2xl上可能的取值是x=2或x=1或x=m.当x=2时,由 y=-(x-m)2+m2+1解得m=- ,此时,它在2xl的最大值是 ,与题意不符.当x=1时,由y=-(x-m)2+m2+1解得m=2,此时y=-(x-2)2+5,它在2xl的最大值

    2、是4,与题意相符.当x= m时,由 4=-(x-m)2+m2+1解得m=,当m=此时y=-(x+)2+4.它在2xl的最大值是4,与题意相符;当m=,y=-(x-)2+4它在2xl在x=1处取得,最大值小于4,与题意不符.综上所述,实数m的值为.故选C 3 已知0x,那么函数y=-2x2+8x-6的最大值是( )A -10.5 B.2 C . -2.5 D. -6答案:C解:y=-2x2+8x-6=-2(x-2)2+2该抛物线的对称轴是x=2,且在x2上y随x的增大而增大又0x,当x=时,y取最大值,y最大=-2(-2)2+2=-2.5故选:C4、已知关于x的函数.下列结论:存在函数,其图像经

    3、过(1,0)点;函数图像与坐标轴总有三个不同的交点;当时,不是y随x的增大而增大就是y随x的增大而减小;若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。真确的个数是( )A,1个 B、2个 C 3个 D、4个答案:B分析:将(1,0)点代入函数,解出k的值即可作出判断;首先考虑,函数为一次函数的情况,从而可判断为假;根据二次函数的增减性,即可作出判断;当k=0时,函数为一次函数,无最大之和最小值,当k0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0运用方程思想;假,反例:k=0时,只有两个交

    4、点运用举反例的方法;假,如k=1,当x1时,先减后增;运用举反例的方法;真,当k=0时,函数无最大、最小值;k0时,y最=,当k0时,有最小值,最小值为负;当k0时,有最大值,最大值为正运用分类讨论思想二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是 答案:122、已知直角三角形两直角边的和等于8,两直角边各为 时,这个直角三角形的面积最大,最大面积是 答案:4、4,8解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.S= x(8-x)(0x4时,P(5,

    5、-2),当m1时,P(-3,-14),综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14); (3)如图,设D点的横坐标为t(0t4),则D点的纵坐标为,过D作y 轴的平行线交AC于E,由题意可求得直线AC的解析式为, E点的坐标为, 当t=2时,DAC的面积最大, D(2,1)。4如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EGAD,FHBC,垂足分别是G,H,且EG+FH=EF(1)求线段EF的长;(2)设EG=x,AGE与CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值范围,并求出S的最小值5如图,点C是线段AB上的任意一点(C点不与A、

    6、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N(1)求证:MNAB;(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由(1)由题中条件可得ACEDCB,进而得出ACMDCN,即CM=CN,MCN是等边三角形,即可得出结论;(2)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论解答(1)证明:ACD与BCE是等边三角形,AC=CD,CE=BC,ACE=BCD,在ACE与DCB中,AC

    7、=CDACE=BCDCE=BCACEDCB(SAS),CAE=BDC,在ACM与DCN中,CAE=BDCAC=CDACM=DCNACMDCN,CM=CN,又MCN=180-60-60=60,MCN是等边三角形,MNC=NCB=60即MNAB;(2)解:假设符合条件的点C存在,设AC=x,MN=y,6、如图,在中,, 的面积为,点为边上的任意一点(不与、重合),过点作,交于点设以为折线将翻折,所得的与梯形重叠部分的面积记为y.(1)用x表示ADE的面积;(2)求出时y与x的函数关系式;(3)求出时y与x的函数关系式;(4)当取何值时,的值最大?最大值是多少?解:(1) DEBC ADE=B,AE

    8、D=C ADEABC 即 (2)BC=10 BC边所对的三角形的中位线长为5当0 时 (3)10时,点A落在三角形的外部,其重叠部分为梯形SADE=SADE= DE边上的高AH=AH=由已知求得AF=5AF=AA-AF=x-5由AMNADE知(4)在函数中0x5 当x=5时y最大为: 在函数中当时y最大为:当时,y最大为: 7、如图,抛物线与x轴交于A、B两点,与Y轴交于C点,ABOCDEMXY且A(1,0)。(1)求抛物线的解析式及顶点的坐标(2)判断的形状,证明你的结论。(3)点(m,0)是轴上的一个动点,当+的值最小时,求m的值解:(1)将A(1,0)代入得,所以抛物线的解析式配方得:,

    9、所以顶点D(2)求出AC=,BC=,而AB=5,故为RT (3)作点C关于X轴的对称点E(,0),连接DE交X轴于点M,通过两点式可求得直线DE的解析式:,当=0时,解得=(,0)即m=8如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求PAC为直角三角形时点P的坐标分析:(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将

    10、其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值 (2)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)当PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解解:(1)B(4,m)在直线线y=x+2上,m=4+2=6,B(4,6),A(,)、B(4,6)在抛物线y=ax2+bx+6上,=()2 a+b+6, 6=16a+4b+6解得a=2,b=-8抛物线的解析式为y=2x2-8x+6(2)设动点P的坐标为(n,n

    11、+2),则C点的坐标为(n,2n2-8n+6),PC=(n+2)-(2n2-8n+6),=-2n2+9n-4,=-2(n-)2+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90如答图3-1,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:k+b= ,3k+b=0,解得k=-1,b=3直线AM的解析式为:y=-x+3 又抛物线的解析式为:y=2x2-8x+6 联立式,解得:x=3或x=(与点A重合,舍去)C(3,0),即点C、M重合当x=3时,y=x+2=5,P1(3,5);iii)若点C为直角顶点,则ACP=90y=2x2-8x+6=2(x-2)2-2,抛物线的对称轴为直线x=2如答图3-2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+2=,P2(,)点P1(3,5)、P2(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)二次函数的最值问题.doc
    链接地址:https://www.163wenku.com/p-5484257.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库