(完整版)三角函数的图像和性质知识点及例题讲解.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)三角函数的图像和性质知识点及例题讲解.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 三角函数 图像 性质 知识点 例题 讲解
- 资源描述:
-
1、三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx x0,2p的图像中,五个关键点是:(0,1) (,0) (p,-1) (,0) (2p,1)2、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴例作下列函数的简图(1)y=
2、|sinx|,x0,2, (2)y=-cosx,x0,2例利用正弦函数和余弦函数的图象,求满足下列条件的x的集合: 3、周期函数定义:对于函数,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:,那么函数就叫做周期函数,非零常数T叫做这个函数的周期。注意: 周期T往往是多值的(如 2p,4p,-2p,-4p,都是周期)周期T中最小的正数叫做的最小正周期(有些周期函数没有最小正周期), 的最小正周期为2p (一般称为周期) 正弦函数、余弦函数:。正切函数:例求下列三角函数的周期:1 y=sin(x+) 2 y=cos2x 3 y=3sin(+) 4 y=tan3x 例求下列函数的定义
3、域和值域:(1) (2) (3)例5求函数的单调区间 例不求值,比较大小(1)sin()、sin(); (2)cos()、cos()解:(1) (2)cos()coscos且函数ysinx,x,是增函数 cos()coscossin()sin() 0即sin()sin()0 且函数ycosx,x0,是减函数coscos即coscos0cos()cos()04、函数的图像:(1)函数的有关概念:振幅:; 周期:; 频率:; 相位:; 初相:(2) 振幅变换y=Asinx,xR(A0且A1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A1)或缩短(0A1)到原来的A倍得到的它的值域-A, A
展开阅读全文