书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型(完整版)三角函数的图像和性质知识点及例题讲解.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5484166
  • 上传时间:2023-04-21
  • 格式:DOC
  • 页数:6
  • 大小:655KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)三角函数的图像和性质知识点及例题讲解.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 三角函数 图像 性质 知识点 例题 讲解
    资源描述:

    1、三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx x0,2p的图像中,五个关键点是:(0,1) (,0) (p,-1) (,0) (2p,1)2、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴例作下列函数的简图(1)y=

    2、|sinx|,x0,2, (2)y=-cosx,x0,2例利用正弦函数和余弦函数的图象,求满足下列条件的x的集合: 3、周期函数定义:对于函数,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:,那么函数就叫做周期函数,非零常数T叫做这个函数的周期。注意: 周期T往往是多值的(如 2p,4p,-2p,-4p,都是周期)周期T中最小的正数叫做的最小正周期(有些周期函数没有最小正周期), 的最小正周期为2p (一般称为周期) 正弦函数、余弦函数:。正切函数:例求下列三角函数的周期:1 y=sin(x+) 2 y=cos2x 3 y=3sin(+) 4 y=tan3x 例求下列函数的定义

    3、域和值域:(1) (2) (3)例5求函数的单调区间 例不求值,比较大小(1)sin()、sin(); (2)cos()、cos()解:(1) (2)cos()coscos且函数ysinx,x,是增函数 cos()coscossin()sin() 0即sin()sin()0 且函数ycosx,x0,是减函数coscos即coscos0cos()cos()04、函数的图像:(1)函数的有关概念:振幅:; 周期:; 频率:; 相位:; 初相:(2) 振幅变换y=Asinx,xR(A0且A1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A1)或缩短(0A1)到原来的A倍得到的它的值域-A, A

    4、最大值是A, 最小值是-A若A0且1)的图象,可看作把正弦曲线上所有点的横坐标缩短(1)或伸长(01)到原来的倍(纵坐标不变)若0则可用诱导公式将符号“提出”再作图决定了函数的周期,这一变换称为周期变换(4) 相位变换一般地,函数ysin(x),xR(其中0)的图象,可以看作把正弦曲线上所有点向左(当0时)或向右(当0时平行移动个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)ysin(x)与ysinx的图象只是在平面直角坐标系中的相对位置不一样,这一变换称为相位变换5、小结平移法过程(步骤)作y=sinx(长度为2p的某闭区间)得y=sin(x+)得y=sinx得y=sin(x+)

    5、得y=sin(x+)得y=Asin(x+)的图象,先在一个周期闭区间上再扩充到R上。沿x轴平 移|个单位横坐标 伸长或缩短横坐标伸 长或缩短沿x轴平 移|个单位纵坐标伸 长或缩短纵坐标伸 长或缩短图e6、函数,当时,取得最小值为 ;当时,取得最大值为,则,例 如图e,是f(x)Asin(x),A0,的一段图象,则f(x)的表达式为 例 如图b是函数yAsin(x)2的图象的一部分,它的振幅、周期、初相各是( )AA3,BA1,CA1,DA1,例 画出函数y3sin(2x),xR的简图解:(五点法)由T,得T 列表:x2x+023sin(2x+)03030例求函数的定义域、值域,并指出它的周期性

    6、、奇偶性、单调性解:由得,所求定义域为 值域为R,周期,是非奇非偶函数在区间上是增函数例 已知函数y=sin2x+cos2x-2 (1)用“五点法”作出函数在一个周期内的图象 (2)求这个函数的周期和单调区间 (3)求函数图象的对称轴方程 (4)说明图象是由y=sinx的图象经过怎样的变换得到的 解:y=sin2x+cos2x-2=2sin(2x+)-2(1)列表 x02-20-2-4-2其图象如图示 (2)= 由-+2k2x+2k,知函数的单调增区间为 -+k,+k,kZ 由+2k2x+2k,知函数的单调减区间为 +k,+k,kZ (3)由2x+=+k得x=+ 函数图象的对称轴方程为x=+,(kZ) (4)把函数y1=sinx的图象上所有点向左平移个单位,得到函数y2=sin(x+)的图象; 再把y2图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到y3=sin (2x+)的图象; 再把y3图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到y4=2sin (2x+)的图象; 最后把y4图象上所有点向下平移2个单位,得到函数y=2sin (2x+)-2的图象

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)三角函数的图像和性质知识点及例题讲解.doc
    链接地址:https://www.163wenku.com/p-5484166.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库