书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型(完整版)一元二次方程专题能力培优(含答案).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5483990
  • 上传时间:2023-04-21
  • 格式:DOC
  • 页数:11
  • 大小:459KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)一元二次方程专题能力培优(含答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 一元 二次方程 专题 能力 答案
    资源描述:

    1、第2章 一元二次方程2.1 一元二次方程专题一 利用一元二次方程的定义确定字母的取值 1.已知是关于x的一元二次方程,则m的取值范围是( )A.m3 B.m3 C.m-2 D. m-2且m32. 已知关于x的方程,问:(1)m取何值时,它是一元二次方程并写出这个方程;(2)m取何值时,它是一元一次方程?专题二 利用一元二次方程的项的概念求字母的取值3.关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m的值4.若一元二次方程没有一次项,则a的值为 .专题三 利用一元二次方程的解的概念求字母、代数式5.已知关于x的方程x2+bx+a=0的一个根是-a(a0),则a-b值为()

    2、A.1 B.0 C.1 D.26.若一元二次方程ax2+bx+c=0中,ab+c=0,则此方程必有一个根为 .7.已知实数a是一元二次方程x22013x+1=0的解,求代数式的值.知识要点:1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.3.使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根.温馨提示:1.一元二次方程概念中一定要注意二次项系数不为0的条件.2.一元二次方程

    3、的根是两个而不再是一个.方法技巧:1.axk+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会. 答案:1. D 解析:,解得m-2且m32.解:(1)当时,它是一元二次方程.解得:m=1当m=1时,原方程可化为2x2-x-1=0;(2)当或者当m+1+(m-2)0且m2+1=1时,它是一元一次方程. 解得:m=-1,m=0.故当m=-1或0时,为一元一次方程3.解:由题意,得: 解得:m=14.a=-2 解析:由题意得解得a=2.5. A 解析:关于x的方程x2+bx+a=0的一个根是-a(a0),a2a

    4、b+a=0.a(ab+1)=0.a0,1-b+a=0.a-b=-16.x=1 解析:比较两个式子会发现:(1)等号右边相同;(2)等号左边最后一项相同;(3)第一个式子x2对应了第二个式子中的1,第一个式子中的x对应了第二个式子中的-1.故.解得x=1.7. 解:实数a是一元二次方程x22013x+1=0的解,a22013a+1=0.a2+1=2013a,a22013a=1.2.2 一元二次方程的解法专题一 利用配方法求字母的取值或者求代数式的极值1. 若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A-9或11 B-7或8 C-8或9 C-8或92.如果代数式

    5、x2+6x+m2是一个完全平方式,则m= .3. 用配方法证明:无论x为何实数,代数式2x2+4x5的值恒小于零专题二 利用判定一元二次方程根的情况或者判定字母的取值范围4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的方程kx2+3x+2=0有实数根,则k的取值范围是( )6.定义:如果一元二次方程ax2bxc0(a0)满足abc0,那么我们称这个方程为“凤凰”方程已知ax2bxc0(a0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是

    6、()AacBab CbcDabc专题三 解绝对值方程和高次方程7.若方程(x2+y2-5)2=64,则x2+y2= .8. 阅读题例,解答下题:例:解方程x2|x1|1=0.解:(1)当x10,即x1时,x2(x1)1=0,x2x=0.解得:x1=0(不合题设,舍去),x2=1.(2)当x10,即x1时,x2+(x1)1=0,x2+x2=0.解得x1=1(不合题设,舍去),x2=2.综上所述,原方程的解是x=1或x=2.依照上例解法,解方程x2+2|x+2|4=0专题四 一元二次方程、二次三项式因式分解、不等式组之间的微妙联系9.探究下表中的奥秘,并完成填空:10.请先阅读例题的解答过程,然后

    7、再解答:代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0因此,解方程(x+2)(3x-5)=0,就相当于解方程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2= 根据上面解一元二次方程的过程,王力推测:ab0,则有 或者请判断王力的推测是否正确?若正确,请你求出不等式 的解集,如果不正确,请说明理由专题五 利用根与系数的关系求字母的取值范围及

    8、求代数式的值11. 设x1、x2是一元二次方程x2+4x3=0的两个根,2x1(x22+5x23)+a=2,则a=12.(2012怀化)已知x1、x2是一元二次方程的两个实数根, 是否存在实数a,使x1x1x2=4x2成立?若存在,求出a的值;若不存在,请你说明理由; 求使(x11)(x21)为负整数的实数a的整数值13.(1)教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1、x2,x1+x2=, x1x2=.根据这一性质,我们可以求出已知方程关于x1、x2的代数式的值例如:已知x1、x2为方程x2-2x-1=0的两根,则:(1)x1+x2=_,x1x2=_,那么x12

    9、+x22=( x1+x2)2-2 x1x2=_ _请你完成以上的填空(2)阅读材料:已知,且求的值解:由可知.又且,即是方程的两根=1(3)根据阅读材料所提供的的方法及(1)的方法完成下题的解答已知,且求的值知识要点:1.解一元二次方程的基本思想降次,解一元二次方程的常用方法:直接开平方法、配方法、公式法、因式分解法.2.一元二次方程的根的判别式=b-4ac与一元二次方程ax2+bx+c=0(a0)的根的关系:当0时,一元二次方程有两个不相等的实数解;当=0时,一元二次方程有两个相等的实数解;0,k0时,a(x+h)2+kk;当a0,k0,1p%=0.9. p%=0.1=10%.答:平均每次下

    10、调10%;(2)先下调5%,再下调15%,这样最后单价为7000元(15%)(115%)=5652.5元. 销售经理的方案对购房者更优惠一些7.解:因为60棵树苗售价为120元607200元8800元,所以该校购买树苗超过60棵设该校共购买了x棵树苗,由题意,得 .解得当时,不合题意,舍去;当时,.答:该校共购买了80棵树苗 8.解:(1)270.3=26.7; (2)设需要销售出x部汽车可盈利12万元.当销售10部以内(含10部)时,依题可得2827+0.1(x1)x+0.5x=12.解得.当销售6部汽车时,当月可盈利12万元.当销售10部以上时,依题可得2827+0.1(x1)x+x=12.解得,均不合题意,应舍去.答:当销售6部汽车时,当月可盈利12万元.9.解:(1)n3;(2)设这个凸多边形是边形,由题意,得.解得 (不合题意,舍去).答:这个凸多边形是七边形.(3)不存在.理由:假设存在边形有21条对角线. 由题意,得.解得.因为多边形的边数为正整数,但不是正整数,故不合题意.所以不存在有18条对角线的凸多边形.10.解:(1)1,5,9,13(奇数)2n1;4,8,12,16(偶数)2n(2)由(1)可知n为偶数时P1=2nP2=n22n.根据题意得n22n=52n,n212n=0,解得n=12,n=0(舍去) 存在偶数n=12使得P2=5P12

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)一元二次方程专题能力培优(含答案).doc
    链接地址:https://www.163wenku.com/p-5483990.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库