(完整版)一元二次方程专题能力培优(含答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)一元二次方程专题能力培优(含答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 一元 二次方程 专题 能力 答案
- 资源描述:
-
1、第2章 一元二次方程2.1 一元二次方程专题一 利用一元二次方程的定义确定字母的取值 1.已知是关于x的一元二次方程,则m的取值范围是( )A.m3 B.m3 C.m-2 D. m-2且m32. 已知关于x的方程,问:(1)m取何值时,它是一元二次方程并写出这个方程;(2)m取何值时,它是一元一次方程?专题二 利用一元二次方程的项的概念求字母的取值3.关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m的值4.若一元二次方程没有一次项,则a的值为 .专题三 利用一元二次方程的解的概念求字母、代数式5.已知关于x的方程x2+bx+a=0的一个根是-a(a0),则a-b值为()
2、A.1 B.0 C.1 D.26.若一元二次方程ax2+bx+c=0中,ab+c=0,则此方程必有一个根为 .7.已知实数a是一元二次方程x22013x+1=0的解,求代数式的值.知识要点:1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.3.使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根.温馨提示:1.一元二次方程概念中一定要注意二次项系数不为0的条件.2.一元二次方程
3、的根是两个而不再是一个.方法技巧:1.axk+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会. 答案:1. D 解析:,解得m-2且m32.解:(1)当时,它是一元二次方程.解得:m=1当m=1时,原方程可化为2x2-x-1=0;(2)当或者当m+1+(m-2)0且m2+1=1时,它是一元一次方程. 解得:m=-1,m=0.故当m=-1或0时,为一元一次方程3.解:由题意,得: 解得:m=14.a=-2 解析:由题意得解得a=2.5. A 解析:关于x的方程x2+bx+a=0的一个根是-a(a0),a2a
4、b+a=0.a(ab+1)=0.a0,1-b+a=0.a-b=-16.x=1 解析:比较两个式子会发现:(1)等号右边相同;(2)等号左边最后一项相同;(3)第一个式子x2对应了第二个式子中的1,第一个式子中的x对应了第二个式子中的-1.故.解得x=1.7. 解:实数a是一元二次方程x22013x+1=0的解,a22013a+1=0.a2+1=2013a,a22013a=1.2.2 一元二次方程的解法专题一 利用配方法求字母的取值或者求代数式的极值1. 若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A-9或11 B-7或8 C-8或9 C-8或92.如果代数式
5、x2+6x+m2是一个完全平方式,则m= .3. 用配方法证明:无论x为何实数,代数式2x2+4x5的值恒小于零专题二 利用判定一元二次方程根的情况或者判定字母的取值范围4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的方程kx2+3x+2=0有实数根,则k的取值范围是( )6.定义:如果一元二次方程ax2bxc0(a0)满足abc0,那么我们称这个方程为“凤凰”方程已知ax2bxc0(a0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是
展开阅读全文