(完整版)二次函数图像对称变换前后系数的关系(专题).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)二次函数图像对称变换前后系数的关系(专题).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 二次 函数 图像 对称 变换 前后 系数 关系 专题
- 资源描述:
-
1、二次函数图像对称变换前后系数的关系课时学习目标:1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。3.能说出抛物线y=ax2+bx+c,关于x轴、y轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。学习重点:利用函数的图像,观察认识函数的性质,结合解析式,认识a、b、c、的取值,对图像特征的影响。学习难点:利用图像认识总结函数性质变化规律。一、复习预备1.抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_
2、时, y随着x的增大而增大; 在 侧,即x_时, y随着x的增大而减小;当x= 时,函数y最 值是 。2.抛物线y=x-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_时, y随着x的增大而增大; 在 侧,即x_时, y随着x的增大而减小;当x= 时,函数y最 值是_ 。3.已知函数y= x2 -2x -3 , (1)把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图像交x轴于A、B两点,交y 轴于P点,求APB的面积;(6)根据图象草图,说出 x取哪些值时
3、, y=0; y0.4.二次函数y=ax2+bx+c(a0)的图象如图2所示,则:a 0; b 0;c 0; 0。例3:已知二次函数的图像如图3所示,下列结论:(1)a+b+c0, (2)a-b+c0, (3)abc 0, (4)b=2a其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个.二、归纳二次函数y=ax2+bx+c(a0)的图像与系数a、b、c、的关系系数的符号图像特征a的符号决定开口方向a0.抛物线开口向 a0,同号抛物线对称轴在y 轴的 侧ab=0,b=0抛物线对称轴在 ab0.抛物线与y轴交于 C=0抛物线与y轴交于 c0.抛物线与x 轴有 个交点=0抛物线与x
4、 轴有 个交点0抛物线与x 轴有 个交点三、二次函数图像对称变换前后系数的关系探究例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。例2. 某抛物线和函数y= -x2 +2x -3的图象关于x轴成轴对称, 请你求出该抛物线的关系式。例3.某抛物线和函数y= -x2 +2x -3的图象关于原点成中心对称,请你求出该抛物线的关系式。例4.某抛物线和函数y= -x2 +2x -3的图象关于顶点坐标成轴对称, 请你求出该抛物线的关系式。例5.某抛物线和函数y= -x2 +2x -3的图象关于点(3,2)成中心对称, 请你求出该抛物线的关系式。函数y=
5、ax2 +bx+c的图象对称变换后,解析式系数变化规律:变换形式图像关系系数关系原 因关于轴x轴对称变换a系数a互为相反数开口方向相反b系数b互为相反数 值不变,a、b同变c系数c互为相反数两交点关于x轴对称的点关于轴y轴对称变换a系数a不变开口方向相同b系数b互为相反数 变号,a不变b变c系数c不变两交点重合关于原定中心对称变换a系数a互为相反数开口方向相反b系数b不变 变号,a变号b不变c系数c互为相反数两交点关于x轴对称的点四、达标检测1. 二次函数y= ax2 +bx+c(a0)的图象如图所示,则点A(a,b)在( )A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.二次
6、函数y= ax2 +bx+c(a0)的图象如图所示,则下列条件不正确的是( )A.a0,c0 B.b2-4ac0 C.a+b+c0(1)(2)yxyx3.二次函数y= 6x2 +7x -3的图象关于x轴对称的图象解析式为_,关于y轴对称的图象解析式为_,关于坐标原点对称的解析式_.二次函数图象变换规律一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成的形式,确定其顶点,然后做出二次函数的图像,将抛物线平移,使其顶点平移到.具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减,上加下减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶
7、点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称(即:抛物线绕顶点旋转180) 关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是 5. 关于点对称 关于点对称后,得到的解析式是 无论抛物线作何种对称变换,形状不变,不变求抛物线的对称抛物线的表达式时,先确定已知抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,再写出其对称抛物线的表达式
展开阅读全文