(完整版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高考 全国卷 文科 数学 立体几何 专题 复习 详细 解析 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、2012-2018年新课标全国卷文科数学汇编立体几何一、选择题【2017,6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径若该几何体的体积是,则它的表面积是()A B C D【2016,11】平面过正方体的顶点,平面,平面,平面,则所成角的正弦值为()A B C D【2015,6】九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M依垣内角,下周八尺,高五尺,问”积及为M几何?”其意思为:“在屋内墙角处堆
2、放M(如图,M堆为一个圆锥的四分之一),M堆底部的弧长为8尺,M堆的高为5尺,M堆的体积和堆放的M各位多少?”已知1斛M的体积约为162立方尺,圆周率约为3,估算出堆放的M有( ) A14斛 B22斛 C36斛 D66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20,则r=( ) BA1 B2 C4 D8 【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A三棱锥 B三棱柱
3、 C四棱锥 D四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为()A168 B88 C1616 D816【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A6 B9 C12 D15【2012,8】平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为()A B C D【2018,5】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12 B.12 C.8 D.10【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的
4、点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.2 B.C.3 D.2【2018,10】在长方形ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为A.8 B.6 C.8 D.8二、填空题【2017,16】已知三棱锥的所有顶点都在球的球面上,是球的直径若平面,三棱锥的体积为9,则球的表面积为_【2013,15】已知H是球O的直径AB上一点,AHHB12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_三、解答题【2017,18】如图,在四棱锥中,且(1)
5、证明:平面平面;(2)若,且四棱锥的体积为,求该四棱锥的侧面积【2016,18】如图所示,已知正三棱锥的侧面是直角三角形,顶点在平面内的正投影为点,在平面内的正投影为点连结并延长交于点(1)求证:是的中点;(2)在题图中作出点在平面内的正投影(说明作法及理由),并求四面体的体积【2015,18】如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD,()证明:平面AEC平面BED;()若ABC=120,AEEC,三棱锥E- ACD的体积为,求该三棱锥的侧面积【2014,19】如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【2013,19】如图,三棱柱
6、ABCA1B1C1中,CACB,ABAA1,BAA160(1)证明:ABA1C;(2)若ABCB2,A1C,求三棱柱ABCA1B1C1的体积【2012,19】如图,三棱柱ABCA1B1C1中,侧棱垂直底面,AC=BC=AA1,D是棱AA1的中点(1)证明:平面BDC1平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比【2018,18】如图,在平行四边形ABCM中,AB=AC=3,ACM=90,以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA。(1) 证明:平面ACD平面ABC;(2) Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积
7、。解读一、选择题【2017,6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是()【解法】选A由B,ABMQ,则直线AB平面MNQ;由C,ABMQ,则直线AB平面MNQ;由D,ABNQ,则直线AB平面MNQ故A不满足,选A【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径若该几何体的体积是,则它的表面积是()A B C D解读:选A由三视图可知,该几何体是一个球截去球的,设球的半径为,则,解得该几何体的表面积等于球的表面积的,加上个截面的面积,每个截面是圆面的,所以该几何体的
8、表面积为故选A【2016,11】平面过正方体的顶点,平面,平面,平面,则所成角的正弦值为()A B C D解读:选A解法一:将图形延伸出去,构造一个正方体,如图所示通过寻找线线平行构造出平面,即平面,即研究与所成角的正弦值,易知,所以其正弦值为故选A解法二(原理同解法一):过平面外一点作平面,并使平面,不妨将点变换成,作使之满足同等条件,在这样的情况下容易得到,即为平面,如图所示,即研究与所成角的正弦值,易知,所以其正弦值为故选A【2015,6】九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M依垣内角,下周八尺,高五尺,问”积及为M几何?”其意思为:“在屋内墙角处堆放M(如
9、图,M堆为一个圆锥的四分之一),M堆底部的弧长为8尺,M堆的高为5尺,M堆的体积和堆放的M各位多少?”已知1斛M的体积约为162立方尺,圆周率约为3,估算出堆放的M有( ) BA14斛 B22斛 C36斛 D66斛解:设圆锥底面半径为r,依题,所以M堆的体积为,故堆放的M约为16222,故选B【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20,则r=( ) BA1 B2 C4 D8 解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为2r2+r2r+r2
10、+2r2r =5r2+4r2=16+20,解得r=2,故选B【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )BA三棱锥 B三棱柱 C四棱锥 D四棱柱解:几何体是一个横放着的三棱柱 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为()A168 B88 C1616 D816解读:选A该几何体为一个半圆柱与一个长方体组成的一个组合体V半圆柱2248,V长方体42216所以所求体积为168故选A【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A6 B9 C12 D15【解读】由
展开阅读全文