书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型(完整版)三角函数大题专项(含答案).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5483692
  • 上传时间:2023-04-21
  • 格式:DOC
  • 页数:18
  • 大小:459.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)三角函数大题专项(含答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 三角函数 专项 答案
    资源描述:

    1、三角函数专项训练1在ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2Asin2C)(ab)sinB(1)证明a2+b2c2ab;(2)求角C和边c2在ABC中,内角A,B,C所对的边分别为a,b,c已知bsinAacos(B)()求角B的大小;()设a2,c3,求b和sin(2AB)的值3已知,为锐角,tan,cos(+)(1)求cos2的值;(2)求tan()的值4在平面四边形ABCD中,ADC90,A45,AB2,BD5(1)求cosADB;(2)若DC2,求BC5已知函数f(x)sin2x+sinxcosx()求f(x)的最小正周期;()若f(x)在区间,m上的最

    2、大值为,求m的最小值6在ABC中,内角A,B,C所对的边分别为a,b,c已知asinA4bsinB,ac(a2b2c2)()求cosA的值;()求sin(2BA)的值7设函数f(x)sin(x)+sin(x),其中03,已知f()0()求;()将函数yf(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数yg(x)的图象,求g(x)在,上的最小值8在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a5,c6,sinB()求b和sinA的值;()求sin(2A+)的值9ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求s

    3、inBsinC;(2)若6cosBcosC1,a3,求ABC的周长10ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)8sin2(1)求cosB;(2)若a+c6,ABC的面积为2,求b11已知函数f(x)cos(2x)2sinxcosx(I)求f(x)的最小正周期;(II)求证:当x,时,f(x)12已知向量(cosx,sinx),(3,),x0,(1)若,求x的值;(2)记f(x),求f(x)的最大值和最小值以及对应的x的值13在ABC中,A60,ca(1)求sinC的值;(2)若a7,求ABC的面积14已知函数f(x)2sinxcosx+cos2x(0)的最小正周期为(

    4、1)求的值;(2)求f(x)的单调递增区间15在ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c2acosB(1)证明:A2B;(2)若cosB,求cosC的值16设f(x)2sin(x)sinx(sinxcosx)2()求f(x)的单调递增区间;()把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数yg(x)的图象,求g()的值17在ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2BbsinA(1)求B;(2)已知cosA,求sinC的值18在ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c2aco

    5、sB()证明:A2B;()若ABC的面积S,求角A的大小19在ABC中,角A,B,C所对的边分别是a,b,c,且+()证明:sinAsinBsinC;()若b2+c2a2bc,求tanB20在ABC中,AC6,cosB,C(1)求AB的长;(2)求cos(A)的值21已知函数f(x)4tanxsin(x)cos(x)(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间,上的单调性22ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)c()求C;()若c,ABC的面积为,求ABC的周长参考答案1在ABC中,角A、B、C对应边a、b、c,外接圆半径为1

    6、,已知2(sin2Asin2C)(ab)sinB(1)证明a2+b2c2ab;(2)求角C和边c【解答】证明:(1)在ABC中,角A、B、C对应边a、b、c,外接圆半径为1,由正弦定理得:2R2,sinA,sinB,sinC,2(sin2Asin2C)(ab)sinB,2()(ab),化简,得:a2+b2c2ab,故a2+b2c2ab解:(2)a2+b2c2ab,cosC,解得C,c2sinC22在ABC中,内角A,B,C所对的边分别为a,b,c已知bsinAacos(B)()求角B的大小;()设a2,c3,求b和sin(2AB)的值【解答】解:()在ABC中,由正弦定理得,得bsinAasi

    7、nB,又bsinAacos(B)asinBacos(B),即sinBcos(B)cosBcos+sinBsincosB+,tanB,又B(0,),B()在ABC中,a2,c3,B,由余弦定理得b,由bsinAacos(B),得sinA,ac,cosA,sin2A2sinAcosA,cos2A2cos2A1,sin(2AB)sin2AcosBcos2AsinB3已知,为锐角,tan,cos(+)(1)求cos2的值;(2)求tan()的值【解答】解:(1)由,解得,cos2;(2)由(1)得,sin2,则tan2,(0,),+(0,),sin(+)则tan(+)tan()tan2(+)4在平面四

    8、边形ABCD中,ADC90,A45,AB2,BD5(1)求cosADB;(2)若DC2,求BC【解答】解:(1)ADC90,A45,AB2,BD5由正弦定理得:,即,sinADB,ABBD,ADBA,cosADB(2)ADC90,cosBDCsinADB,DC2,BC55已知函数f(x)sin2x+sinxcosx()求f(x)的最小正周期;()若f(x)在区间,m上的最大值为,求m的最小值【解答】解:(I)函数f(x)sin2x+sinxcosx+sin2xsin(2x)+,f(x)的最小正周期为T;()若f(x)在区间,m上的最大值为,可得2x,2m,即有2m,解得m,则m的最小值为6在A

    9、BC中,内角A,B,C所对的边分别为a,b,c已知asinA4bsinB,ac(a2b2c2)()求cosA的值;()求sin(2BA)的值【解答】()解:由,得asinBbsinA,又asinA4bsinB,得4bsinBasinA,两式作比得:,a2b由,得,由余弦定理,得;()解:由(),可得,代入asinA4bsinB,得由()知,A为钝角,则B为锐角,于是,故7设函数f(x)sin(x)+sin(x),其中03,已知f()0()求;()将函数yf(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数yg(x)的图象,求g(x)在,上的最小值【

    10、解答】解:()函数f(x)sin(x)+sin(x)sinxcoscosxsinsin(x)sinxcosxsin(x),又f()sin()0,k,kZ,解得6k+2,又03,2;()由()知,f(x)sin(2x),将函数yf(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数ysin(x)的图象;再将得到的图象向左平移个单位,得到ysin(x+)的图象,函数yg(x)sin(x);当x,时,x,sin(x),1,当x时,g(x)取得最小值是8在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a5,c6,sinB()求b和sinA的值;()求sin(2A+)的值【解答

    11、】解:()在ABC中,ab,故由sinB,可得cosB由已知及余弦定理,有13,b由正弦定理,得sinAb,sinA;()由()及ac,得cosA,sin2A2sinAcosA,cos2A12sin2A故sin(2A+)9ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC1,a3,求ABC的周长【解答】解:(1)由三角形的面积公式可得SABCacsinB,3csinBsinA2a,由正弦定理可得3sinCsinBsinA2sinA,sinA0,sinBsinC;(2)6cosBcosC1,cosBcosC,cosBcosCsin

    12、BsinC,cos(B+C),cosA,0A,A,2R2,sinBsinC,bc8,a2b2+c22bccosA,b2+c2bc9,(b+c)29+3cb9+2433,b+c周长a+b+c3+10ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)8sin2(1)求cosB;(2)若a+c6,ABC的面积为2,求b【解答】解:(1)sin(A+C)8sin2,sinB4(1cosB),sin2B+cos2B1,16(1cosB)2+cos2B1,16(1cosB)2+cos2B10,16(cosB1)2+(cosB1)(cosB+1)0,(17cosB15)(cosB1)0,co

    13、sB;(2)由(1)可知sinB,SABCacsinB2,ac,b2a2+c22accosBa2+c22a2+c215(a+c)22ac153617154,b211已知函数f(x)cos(2x)2sinxcosx(I)求f(x)的最小正周期;(II)求证:当x,时,f(x)【解答】解:()f(x)cos(2x)2sinxcosx,(co2x+sin2x)sin2x,cos2x+sin2x,sin(2x+),T,f(x)的最小正周期为,()x,2x+,sin(2x+)1,f(x)12已知向量(cosx,sinx),(3,),x0,(1)若,求x的值;(2)记f(x),求f(x)的最大值和最小值以

    14、及对应的x的值【解答】解:(1)(cosx,sinx),(3,),cosx3sinx,当cosx0时,sinx1,不合题意,当cosx0时,tanx,x0,x,(2)f(x)3cosxsinx2(cosxsinx)2cos(x+),x0,x+,1cos(x+),当x0时,f(x)有最大值,最大值3,当x时,f(x)有最小值,最小值213在ABC中,A60,ca(1)求sinC的值;(2)若a7,求ABC的面积【解答】解:(1)A60,ca,由正弦定理可得sinCsinA,(2)a7,则c3,CA,sin2C+cos2C1,又由(1)可得cosC,sinBsin(A+C)sinAcosC+cos

    15、AsinC+,SABCacsinB73614已知函数f(x)2sinxcosx+cos2x(0)的最小正周期为(1)求的值;(2)求f(x)的单调递增区间【解答】解:f(x)2sinxcosx+cos2x,sin2x+cos2x,由于函数的最小正周期为,则:T,解得:1(2)由(1)得:函数f(x),令(kZ),解得:(kZ),所以函数的单调递增区间为:(kZ)15在ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c2acosB(1)证明:A2B;(2)若cosB,求cosC的值【解答】(1)证明:b+c2acosB,sinB+sinC2sinAcosB,sinCsin(A+B)si

    16、nAcosB+cosAsinB,sinBsinAcosBcosAsinBsin(AB),由A,B(0,),0AB,BAB,或B(AB),化为A2B,或A(舍去)A2B(II)解:cosB,sinBcosAcos2B2cos2B1,sinAcosCcos(A+B)cosAcosB+sinAsinB+16设f(x)2sin(x)sinx(sinxcosx)2()求f(x)的单调递增区间;()把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数yg(x)的图象,求g()的值【解答】解:()f(x)2sin(x)sinx(sinxcosx)2 2si

    17、n2x1+sin2x21+sin2xsin2xcos2x+12sin(2x)+1,令2k2x2k+,求得kxk+,可得函数的增区间为k,k+,kZ()把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y2sin(x)+1的图象;再把得到的图象向左平移个单位,得到函数yg(x)2sinx+1的图象,g()2sin+117在ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2BbsinA(1)求B;(2)已知cosA,求sinC的值【解答】解:(1)asin2BbsinA,2sinAsinBcosBsinBsinA,cosB,B(2)cosA,sinA,sinCsi

    18、n(A+B)sinAcosB+cosAsinB18在ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c2acosB()证明:A2B;()若ABC的面积S,求角A的大小【解答】()证明:b+c2acosB,sinB+sinC2sinAcosB,sinB+sin(A+B)2sinAcosBsinB+sinAcosB+cosAsinB2sinAcosBsinBsinAcosBcosAsinBsin(AB)A,B是三角形中的角,BAB,A2B;()解:ABC的面积S,bcsinA,2bcsinAa2,2sinBsinCsinAsin2B,sinCcosB,B+C90,或CB+90,A90或A

    19、4519在ABC中,角A,B,C所对的边分别是a,b,c,且+()证明:sinAsinBsinC;()若b2+c2a2bc,求tanB【解答】()证明:在ABC中,+,由正弦定理得:,sin(A+B)sinC整理可得:sinAsinBsinC,()解:b2+c2a2bc,由余弦定理可得cosAsinA,+1,tanB420在ABC中,AC6,cosB,C(1)求AB的长;(2)求cos(A)的值【解答】解:(1)ABC中,cosB,B(0,),sinB,AB5;(2)cosAcos(A)cos(C+B)sinBsinCcosBcosCA为三角形的内角,sinA,cos(A)cosA+sinA2

    20、1已知函数f(x)4tanxsin(x)cos(x)(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间,上的单调性【解答】解:(1)f(x)4tanxsin(x)cos(x)xk+,即函数的定义域为x|xk+,kZ,则f(x)4tanxcosx(cosx+sinx)4sinx(cosx+sinx)2sinxcosx+2sin2xsin2x+(1cos2x)sin2xcos2x2sin(2x),则函数的周期T;(2)由2k2x2k+,kZ,得kxk+,kZ,即函数的增区间为(k,k+),kZ,当k0时,增区间为(,),kZ,x,此时x(,由2k+2x2k+,kZ,得k+xk+,kZ,

    21、即函数的减区间为(k+,k+),kZ,当k1时,减区间为(,),kZ,x,此时x,),即在区间,上,函数的减区间为,),增区间为(,22ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)c()求C;()若c,ABC的面积为,求ABC的周长【解答】解:()在ABC中,0C,sinC0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)sinC,整理得:2cosCsin(A+B)sinC,即2cosCsin(A+B)sinC2cosCsinCsinCcosC,C;()由余弦定理得7a2+b22ab,(a+b)23ab7,SabsinCab,ab6,(a+b)2187,a+b5,ABC的周长为5+

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)三角函数大题专项(含答案).doc
    链接地址:https://www.163wenku.com/p-5483692.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库