书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型高三数学周测试题(18)理.doc

  • 上传人(卖家):宝宝乐园
  • 文档编号:5460236
  • 上传时间:2023-04-18
  • 格式:DOC
  • 页数:16
  • 大小:1.05MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高三数学周测试题(18)理.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 测试 18 下载 _考试试卷_数学_高中
    资源描述:

    1、高三数学周测试题(18)理本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷1至2页,第卷3至4页,共150分。第卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。第卷用黑色墨水签字笔在答题卡上作答。若在试题卷上作答,答案无效。一、选择题:(本大题共12小题,每小题5分,共60分)1. 设,则必有(A) (B) (C) (D) 2已知两条直线:,:,则是直线

    2、的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件3.若函数的定义域是0,4,则函数的定义域是(A) 0,2 (B) (0,2) (C) (0,2 (D) 0,2)4设是可导函数,且,则 (A) (B) (C) 0 (D) 5设,则等于 (A) (B) (C) 或 (D) 不存在6. 在空间中,设为两条不同的直线,为两个不同的平面,给定下列条件:;.其中可以判定的有(A) 个 (B) 个 (C) 个 (D) 个7. 将甲乙两人在内的7名医生分成三个医疗小组,一组3人,另两组每组各2人,则甲乙不分在同一组的分法有 (A) 25种 (B) 90种 (C) 80种

    3、 (D) 120种 8. 三棱柱的体积为1,为侧棱上的点,则四棱锥的体积为 (A) 1 (B) (C) 2 (D) 9. 已知,若函数在上既是奇函数,又是增函数,则函数的图像是 10. 展开式中不含的项的系数绝对值的和为243,不含的项的系数绝对值的和为32,则的值可能为(A) (B) (C) (D)11.平面直角坐标系中,为坐标原点,已知两点,若点满足其中01,且,则点的轨迹方程为(A) (B) (C) () (D) ()12若直线与圆交于两点,且关于直线对称,动点P在不等式组表示的平面区域内部及边界上运动,则的取值范围是(A)(B)(C)(D)三、解答题:(本大题共4小题,共20分)13若

    4、复数同时满足2,(为虚数单位),则 14.有两个等差数列,它们的前项和分别为和,若则 15.已知分别是双曲线的左,右焦点,是双曲线的准线上一点,若且,则双曲线的离心率是16. 半径为4的球面上有A,B,C,D四个点, 且满足, 则的最大值为三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知的内角分别对应,向量,且=1. (1) 求; (2) 若, 求.18. 有3个不相同的球和4个盒子,盒子的编号分别为1、2、3、4,将球逐个独立地、随机地放入4个盒子中去. 以表示其中至少有球的盒子的最小号码.(例如,事件表示第1号,第2号盒子都是空的, 第3号盒子中至

    5、少有一个球).(1) 当时, 求; (2) 求的分布列及期望.19. 如图,在四棱锥中,底面,底面为正方形,分别是的中点.(1) 求证: ; (2) 求二面角的大小; 20. (本小题满分12分)已知函数.(1) 若在处取得极值, 求的值;(2) 若以函数图象上任意一点为切点的切线的斜率恒成立, 求正实数的最小值;(3) 在(1)的条件下, 若关于的方程在上恰有两个不同的实根, 求实数的取值范围.21.已知数列中, 在处取得极值.(1) 证明数列是等比数列, 并求出数列的通项公式;(2) 记, 数列的前项和为, 求使的的最小值;22.已知圆的方程为,椭圆的方程,且离心率为,如果与相交于两点,且

    6、线段恰为圆的直径.OBAxyF1 F2 ()求直线的方程和椭圆的方程;()如果椭圆的左、右焦点分别是,椭圆上是否存在点,使得,如果存在,请求点的坐标,如果不存在,请说明理由.柳州铁一中学猜题卷(三)答案一选择题1-5:DBCBB 6-10:ACDAD 11-12:CD二:填空题13. 14. 15 16. 32 17.(1)因为,所以即即因为0A,则,所以(2)由题知,得,即得,即所以,tanC=tan=18(1)说明2号盒子中可以有1个球或两个球或3个球所以(2)所能取到的值为1,2,3,4 所以分布列为:表格略 期望19.以DP为Z轴,以DA为Y轴,以DC为X轴建系P(0,0,1) A(1

    7、,0,0) B(1,1,0) C(0,1,0) (1) 面BDE的法向量为,设面FDE的法向量为 有 取,即二面角F-DE-B的大小为。(2)设G(x,y,z) , 有z=0,x= 所以G(,0,0) 即当G为AD的中点时,成立。20.(1) 由题知,得所以,即是以2为首项,2为公比的等比数列; 所以叠加得, (2) 即,n-1+所以,即n 的最小值为1005.21.(1)由得m=3(2) ,恒成立22. 解:() 解法一:若直线斜率不存在,则直线的方程为,由椭圆的对称性可知,两点关于轴对称,A,B的中点为(4,0),又线段AB恰为圆的直径,则圆心为(4,0),这与已知圆心为(4,1)矛盾,因

    8、此直线斜率存在,1分所以可设AB直线方程为,且设A(x1,y1)、B(x2,y2), 设椭圆方程,2分将AB直线方程为代入到椭圆方程得,即(1),4分,解得,故直线AB的方程为,6分将代入方程(1)得5x240x+1004b2=0. ,得. 7分 =,得,解得b2=9.故所求椭圆方程为. 8分解法二: 设椭圆方程,1分又设A(x1,y1)、B(x2,y2),则,又,两式相减,得,3分即(x1+x2)(x1x2)+4(y1+y2)(y1y2)=0,.若,直线的方程为,由椭圆的对称性可知,两点关于轴对称,A,B的中点为(4,0),又线段AB恰为圆的直径,则圆心为(4,0),这与已知圆心为(4,1)

    9、矛盾,所以.因此直线斜率存在,且 =1,故直线AB的方程为, 5分代入椭圆方程,得5x240x+1004b2=0 . 6分 ,得.7分|AB|=, 得,解得b2=9.故所求椭圆方程为. 8分()因为的中点是原点, 所以,所以与共线, 10分,而直线AB的方程为y=x+5,所以直线所在的直线方程为y=x. ,或.所以P点坐标为,. 12分高三强化训练(二)数学(文)试题一.选择题(每小题5分,共60分)1.复数满足,则复数的实部与虚部之差为 ( )A.0 B.1 C.3 D.32. 观察下列各式:51=5,52=25,53=125,54=625,=3125,=15625,=78125,则的末四位

    10、数字为 ( )A3125 B5625 C0625 D81253.数列an是等差数列,其前n项和为Sn,若平面上的三个不共线的向量满足且A、B、C三点共线,则S2012=( )A1006B1010C2006D20104.不等式且对任意都成立,则的取值范围为 ( )A B C D 5.已知向量,若,则等于( )A. B. C. D. 6. 在区间上任取两个实数,则函数在区间上有且只有一个零点的概率是 ( )A. B. C. D.7. 等比数列中,=4,函数,则 ( )A B. C. D. 8.下图a是某市参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、Am

    11、 如A2表示身高(单位:cm)在150,155内的学生人数。图b是统计图a中身高在一定范围内学生人数的一个算法流程图。现要统计身高在160180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 ( )A9 B8 C7 D69.定义:数列,满足d为常数,我们称为等差比数列,已知在等差比数列中,则的个位数 ( ) A,3 B,4 C,6 D,810. 已知抛物线与双曲线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的离心率为 ( )A B C D11. 的图像关于对称,且当时,(其中是的导函数),若,则的大小关系是 ( )A. B. C. D. 12.

    12、在直角坐标平面上的点集,那么的面积是 ( )A B C D二.填空题(每小题5分,共20分)13. 在ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,则 。14.已知某个几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_cm3。15.已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为 _。16. 已知函数的对称中心为M,记函数的导函数为, 的导函数为,则有。若函数,则可求得: .三、解答题,本大题共5小题,满分60分. 解答须写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 设的内角所对的边长分别为,且(1

    13、)求的值;(2)求的最大值。PABCDE18. (本小题满分12分)如图,四棱锥PABCD的底面ABCD是直角梯形,DABABC90o,PA底面ABCD,PAABAD2,BC1,E为PD的中点(1) 求证:CE平面PAB;(2) 求PA与平面ACE所成角的正弦值;19.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持20岁以下80045020020

    14、岁以上(含20岁)100150300()在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;()在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率20.(本小题满分12分)设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围。21.(本小题满分12分)已知函数f(x)=ex-1-x(1)求y=f(x)在点(1,f(1)处的切线方程;(2)当x时,f(x)恒成立,求的取值范

    15、围。请从第(22)、(23)、(24)三题中任选一题做答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。22、(本小题满分10分)选修4-1:几何证明选讲 如图,是内接于O,直线切O于点,弦,与相交于点(1) 求证:;(2)若,求。23(本小题满分10分)选修44:坐标系与参数方程 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。(1) 写出直线的参数方程和圆的极坐标方程;(2)试判定直线和圆的位置关系。24. (本小题满分10

    16、分)选修45:不等式选讲已知函数。(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。参考答案一.选择题1.A 2.D 3.A 4. B 5. B 6. D 7. C 8 .B 9.C 10. B 11.C 12.C二.填空题13. ,14. , 15. ,16.-8046 三、解答题17.解析:(1)在中,由正弦定理及可得即,则(2)由得18题图当且仅当时,等号成立,故当时,的最大值为.18.解(1). 证明:取PA的中点F,连结FE、FB,则FEBC,且FEADBC,BCEF是平行四边形,CEBF,而BF平面PAB,CE平面PAB(2) 解:取

    17、 AD的中点G,连结EG,则EGAP,问题转为求EG与平面ACE所成角的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则GEH为直线EG与平面ACE所成的角现用等体积法来求GH VEAGCSAGCEG,又AE,ACCE,易求得SAEC,VGAEC GHVEAGC,GH在RtEHG中,sinGEH,即PA与平面ACE所成的角正弦值为 19.解:(2)设所选取的人中,有人20岁以下,则,解得.6分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A1,A2;B1,B2,B3,则从中任取2人的所有基本事件为 (A1,B1),(A1, B2),(A1, B3),(A2 ,B1),(

    18、A2 ,B2),(A2 ,B3),(A1, A2),(B1 ,B2),(B2 ,B3),(B1 ,B3)共10个. 8分其中至少有1人20岁以下的基本事件有7个:(A1, B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2), 10分所以从中任意抽取2人,至少有1人20岁以下的概率为. 12分20. 解:(1)解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)(2)显然直线不满足题设条件,可设直线,联立,消去,整理得:由得:或又,又,即 故由

    19、、得或21.解(1)在处的切线方程为即 2分 (2)由已知得时,恒成立,设 由先证知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. 由可得从而当时,故当时,为减函数,又于是当时,即故不符合题意.综上可得的取值范围为 。12分选做题答案:22解:(1)在ABE和ACD中, ABE=ACD 2分又BAE=EDC BD/MN EDC=DCN直线是圆的切线,DCN=CAD BAE=CAD(角、边、角) 5分(2)EBC=BCM BCM=BDCEBC=BDC=BAC BC=CD=4又BEC=BAC+ABE=EBC+ABE=ABC=ACB BC=BE=4 8分设AE=,易证 ABEDEC 又 .10分23.解:(1)直线的参数方程是,(为参数)圆的极坐标方程是。 .5分(2)圆心的直角坐标是,直线的普通方程是,圆心到直线的距离,所以直线和圆相离。10分24.解:(1)由(2)由(1)知 16

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高三数学周测试题(18)理.doc
    链接地址:https://www.163wenku.com/p-5460236.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库