书签 分享 收藏 举报 版权申诉 / 57
上传文档赚钱

类型三角形全等判定.ppt

  • 上传人(卖家):仙人指路
  • 文档编号:5444087
  • 上传时间:2023-04-14
  • 格式:PPT
  • 页数:57
  • 大小:1.48MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《三角形全等判定.ppt》由用户(仙人指路)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    三角形 全等 判定
    资源描述:

    1、11.2全等三角形的判定全等三角形的判定全等三角形的对应边相等,全等三角形的对应边相等,全等三角形的对应角相等全等三角形的对应角相等.如图:如图:ABC DFE AB=DF,BC=FE,AC=DEA=D,B=F,C=EDEFABC回顾全等三角形的性质回顾全等三角形的性质一张教学用的三角形硬纸板不小心被撕坏一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一个与原来同样大小的新了,如图,你能制作一个与原来同样大小的新教具吗?怎样才能保证制作的新教具与原来的教具吗?怎样才能保证制作的新教具与原来的全等呢?全等呢?CBEAD判断两个三角形全等的推理过程,叫做判断两个三角形全等的推理过程,叫做证明

    2、三角形全等证明三角形全等已知已知ABC,画一个,画一个DEF,使,使 DE=AB,EF=BC,DF=AC1画线段画线段DE=AB;2分别以分别以D、E为圆心,线段为圆心,线段AC、BC为半径画弧,两弧交于点为半径画弧,两弧交于点F;3连接线段连接线段DF、EFDEABCFABCABCABCD例例1 已知已知ABC是一个钢架,是一个钢架,AB=AC,AD是连结点是连结点A与与BC中点中点D的支架求证:的支架求证:ABD ACD.证明:证明:点点D是是BC的中点,的中点,BD=CD在在ABD和和ACD中,中,AB=AC,AD=AD(公共边),(公共边),BD=CD,ABD ACD(SSS)在在AB

    3、C中,中,AB=AC,D是是BC中点,中点,点点E在在AD上找出图上找出图中全等的三角形,并说中全等的三角形,并说明它们为什么是全等的?明它们为什么是全等的?(课本(课本45页页13题)题)DBCAE1已知:如图,已知:如图,ABAD,CB=CD 求证:求证:B=D在在ABC和和ADC中,中,ABC ADC(SSS)B=D(全等三角形的对应角相等)(全等三角形的对应角相等)证明:连结证明:连结AC,BCDAABAD,CBCD,ACAC(公共边),(公共边),证明:证明:BE=CF(已知),(已知),即即 BC=EF在在ABC和和DEF中,中,AB=DE(已知),(已知),AC=DF(已知),(

    4、已知),BC=EF(已证),(已证),ABC DEF(SSS)A=D(全等三角形对应角相等)(全等三角形对应角相等)FABECD BE+EC=CF+EC,2如图,已知点如图,已知点B、E、C、F在同一条直线在同一条直线 上,上,AB=DE,AC=DF,BE=CF求证:求证:A=D(课本课本44页第页第9题)题)1了解三角形的稳定性;了解三角形的稳定性;2掌握三角形全等的条件:边边边(掌握三角形全等的条件:边边边(sss)3能运用全等三角形的条件,解决简单的能运用全等三角形的条件,解决简单的推理证明问题推理证明问题 已知已知ABC,画一个,画一个 ABC,使,使 AB=AB,BC=BC,B=BA

    5、BC1画画B=B;2在射线在射线BO上截取上截取BC=BC,在射线在射线BF上截取上截取BA=BA3连接连接AC以点以点B为圆心,任意长为半径画弧,为圆心,任意长为半径画弧,分别交分别交BA、BC于点于点M、N;画一条射线画一条射线BO,以点,以点B为圆心,为圆心,BM长为半径画弧,交长为半径画弧,交BO 于点于点P;以点以点P为圆心,为圆心,MN长为半径画弧,长为半径画弧,与上步骤所画的弧交于点与上步骤所画的弧交于点Q;过点过点Q画射线画射线BF,则,则OBF=BABCABCMNOPQFABC(DEF(例例2如图,有一池塘,要测池塘两端如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取

    6、一个可以直接到达的距离,可先在平地上取一个可以直接到达A和和B的点的点C,连接,连接AC并延长到并延长到D,使,使CD=CA连连接接BC并延长到并延长到E,使,使CE=CB连接连接DE,那么量,那么量出出DE的长就是的长就是A、B的距离为什么?的距离为什么?ABCDE证明:证明:在在ABC和和DEC中,中,CA=CD,ACB=DCE,CB=CE,ABC DEC(SAS),),AB=DE证明:证明:在在ABC 和和ADC中,中,AB=AD(已知),(已知),CB=CD(已知),(已知),AC=AC(公共边)(公共边)ABC ADC(SSS),),BAO=DAO(全等三角形的对应角(全等三角形的对

    7、应角相等)相等)如右图,已知:如右图,已知:AB=AD,CB=CD求证:求证:ACBDACBDO在在ABO 和和ADO中,中,AB=AD(已知),(已知),BAO=DAO(已证),(已证),AO=AO(公共边),(公共边),ABO ADO(SAS),),AOB=AOD(全等三角形的对应(全等三角形的对应角相等)角相等)AOB=AOD=90 ACBD(垂直定义)(垂直定义)又又AOB+AOD=180(邻补角定义),(邻补角定义),306030606030两个角及这两个角及这两角的夹边分两角的夹边分别对应相等别对应相等两个角及其两个角及其中一角的对边中一角的对边分别对应相等分别对应相等已知:任意已

    8、知:任意ABC,画一个,画一个ABC,使,使AB=AB,A=A,B=B画法:画法:1画画AB=AB,2在在AB的同旁画的同旁画DAB=A,E BA=B,AD、BE交于点交于点CABC就是所要画的三角就是所要画的三角形形ABCABCDE用符号语言表达为:用符号语言表达为:在在ABC与与DEF中,中,A=DAB=DE,B=E,ABC DEF(ASA)ABDECFABDECFC=180AB 在在DEF中,中,F=180-D-E又又 A=D,B=E,C=F在在ABC和和DEF中,中,A=D,AC=DF,C=F,ABC DEF(ASA)证明:证明:在在ABC中,中,ABDECF AD=AE(全等三角形的

    9、对应边相等),(全等三角形的对应边相等),又又 AB=AC(已知(已知),),AB AD=AC AE即:即:BD=CEABEOCD证明:在证明:在ABE 和和ACD中中 A=A(公共角),(公共角),AB=AC(已知已知),),B=C(已知已知),),ABE ACD(ASA),),例例3 已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于点相交于点O,AB=AC,B=C求证:求证:BD=CEDCBAEF1已知:如图,点已知:如图,点B,F,C,E在同一条直在同一条直 线,线,FB=CE,ABED,ACFD,求证:求证:AB=DE,AC=DF 证明:证明:FB=CEBC=

    10、EF ABED,ACFDB=E,ACB=DFE (两直线平行,内错角相等)(两直线平行,内错角相等)FB+FC=CE+FC 在在ABC与与DEF中,中,BC=EFB=EACB=DFE ABC DEF(ASA),),AB=DE,AC=DF (全等三角形对应边相等)(全等三角形对应边相等)DCBAEF2已知:如右图,已知:如右图,AB、CD相交于点相交于点O,ACDB,OC=OD,E、F为为 AB上两上两 点,且点,且AE=BF求证:求证:CE=DFODBACEF证明:在证明:在AOC 和和BOD中,中,ACDB,A=B(两直线平等,内两直线平等,内错角相等错角相等)AOC=BOD(对顶角相等),

    11、(对顶角相等),A=B(已证已证),),OC=OD(已知),(已知),在在AOC 和和BOD中中 AOC BOD(AAS)AC=BD在在AEC 和和BFD中,中,AC=BD(已证),(已证),A=B(已证),(已证),AE=BF(已知),(已知),AEC BFD(SAS),),CE=DF(全等三角形对应边相等)(全等三角形对应边相等)ODBACEF3已知:已知:AB DE,AB=DE,1=2 求证:求证:BG=DF (中考题)(中考题)ABFEDGC12提示:证提示:证ABF和和EDG全等全等CBA一同学不小心打破了一块三角形的一同学不小心打破了一块三角形的玻璃,如图:他应该拿哪一块回玻璃店玻

    12、璃,如图:他应该拿哪一块回玻璃店做一块与原玻璃一模一样的?做一块与原玻璃一模一样的?判定一般三角形全等的方法有哪几种?判定一般三角形全等的方法有哪几种?若这两个三角形是直角三角形,那么这些判若这两个三角形是直角三角形,那么这些判定方法适用吗?判定直角三角形全等有特殊定方法适用吗?判定直角三角形全等有特殊方法吗?方法吗?答:答:SSS,SAS,ASA,AASABCRtABC RtABC 画法:画法:1画画MCN=902在射线在射线CM上取上取BC=BC3以为以为B圆心,圆心,AB为半径画弧,为半径画弧,交射线交射线CN于点于点A4连接连接ABABCMNBACDEF如图,具有下列条件的如图,具有下

    13、列条件的RtABC与与RtDEF(其中(其中CF90)是否全等,)是否全等,在()里填写理由;如果不全等,在()在()里填写理由;如果不全等,在()里打里打“”:(1)ACDF,AD ()(2)ACDF,BCEF()(3)ABDE,BE ()(4)AD,BE ()ASASASAASACBDEF1直角三角形是特殊的三角形,所以不直角三角形是特殊的三角形,所以不仅可以应用一般三角形判定全等的方法,还仅可以应用一般三角形判定全等的方法,还有直角三角形特殊的判定方法有直角三角形特殊的判定方法“HL”公公理理2使用使用“HL”公理时,必须先得出两个公理时,必须先得出两个直角三角形,然后证明斜边和一直角边

    14、对应相直角三角形,然后证明斜边和一直角边对应相等等4直角三角形全等的判定方法有五项直角三角形全等的判定方法有五项依据:依据:“SAS”、“ASA”、“AAS”、“SSS”、“HL”其中,其中,“HL”公理只适用于公理只适用于判定直角三角形全等判定直角三角形全等3两个直角三角形中,由于有直角相等两个直角三角形中,由于有直角相等的条件,所以判定两个直角三角形全等只须找的条件,所以判定两个直角三角形全等只须找两个条件(两个条件中至少有一个条件是一对两个条件(两个条件中至少有一个条件是一对边相等)边相等)三边对应相等三边对应相等 (SSS)一锐角和它的邻边对应相等一锐角和它的邻边对应相等(ASA)一锐

    15、角和它的对边对应相等一锐角和它的对边对应相等(AAS)两直角边对应相等两直角边对应相等 (SAS)斜边和一条直角边对应相等斜边和一条直角边对应相等 (HL)判断判断直角直角三角三角形全形全等的等的条件条件ABCDABC DCB (SSS)1如图,如图,AB=CD,AC=BD,ABC和和DCB 是否全等?试说明理由是否全等?试说明理由 解:解:ABC DCB理由如下:在理由如下:在ABC和和DCB中,中,AB=CD,AC=DB,BC=CB,2如图,如图,D、F是线段是线段BC上的两点,上的两点,AB=EC,AF=ED,要使,要使ABF ECD,还需要条,还需要条 件件_BF=CD 或或 BD=C

    16、FAEBDCF3已知:如图,已知:如图,AB=CB,ABD=CBD 问问AD=CD,BD 平分平分ADC吗?吗?ABCD证明:在证明:在ABD与与CBD中,中,AB=CB,ABD=CBD,BD=BD,ABD CBD(SAS)AD=CD,ADB=CDB,即,即BD平平分分ADC4如图,点如图,点E、F在在BC上,上,BE=CF,AB=DC,B=C,求证:,求证:A=D证明:证明:BF=BE+EF,CE=CF+FE,而而BE=CF,BF=CE在在ABF和和DCE中,中,BF=CE,B=C,AB=DC,BAD BAC(SAS),),A=DADBEFC5如图,如图,B点在点在A点的正北方向两车从路段点

    17、的正北方向两车从路段 AB的一端的一端A出发,分别向东、向西进行相出发,分别向东、向西进行相 同的距离,到达同的距离,到达C、D两地此时两地此时C、D到到B 的距离相等吗?的距离相等吗?BDAC证明:证明:在在BAD和和BAC中,中,BA=BA,BAD=BAC,AD=AC,则则BAD BAC(SAS)BD=BC,C、D到到B的距离相等的距离相等6已知:如图,在已知:如图,在ABC和和ABC中,中,CD、CD分别是高,并且分别是高,并且AC=AC,CD=CD,ACBACB 求证:求证:ABC ABCC A DBC A DB证明:证明:CD、CD分别是高,分别是高,ADC=ADC=90在在Rt A

    18、DC与与Rt ADC中,中,ACAC,CDCD,Rt ADCRt ADC(HL),),A A在在ABC与与ABC中,中,A A,ACAC,ACBACB,ABC ABC(ASA)C A DBC A DB如图:已知如图:已知ABC ABC,AD、AD分别是分别是ABC和和 ABC的对应边上的中线的对应边上的中线AD与与AD有什么关系?证明你的结论。有什么关系?证明你的结论。ABDCABDCAD、AD分别是分别是ABC和和ABC对应边上的中线对应边上的中线证明:证明:ABC ABC AB=AB,BC=BC (全等三角形的对应边相等)(全等三角形的对应边相等)B=B,(全等三角形的对应角相等),(全等三角形的对应角相等)BD=BC BD=BC2121 BC=BCBD=BD证明:证明:ABCD(已知)(已知),B=D(两直线平行,内错角相(两直线平行,内错角相等)等).在在ABE和和CDF中中,B=D(已证)(已证),AB=CD(已知)(已知),A=C(已知)(已知),ABE CDF(ASA),AB=AD.8如图,已知:如图,已知:ABCD,AB=CD,点,点B、E、F、D在同一直线上,在同一直线上,A=C,求证:求证:AE=CFBAEFDC

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:三角形全等判定.ppt
    链接地址:https://www.163wenku.com/p-5444087.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库