三角形全等判定.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《三角形全等判定.ppt》由用户(仙人指路)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 判定
- 资源描述:
-
1、11.2全等三角形的判定全等三角形的判定全等三角形的对应边相等,全等三角形的对应边相等,全等三角形的对应角相等全等三角形的对应角相等.如图:如图:ABC DFE AB=DF,BC=FE,AC=DEA=D,B=F,C=EDEFABC回顾全等三角形的性质回顾全等三角形的性质一张教学用的三角形硬纸板不小心被撕坏一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一个与原来同样大小的新了,如图,你能制作一个与原来同样大小的新教具吗?怎样才能保证制作的新教具与原来的教具吗?怎样才能保证制作的新教具与原来的全等呢?全等呢?CBEAD判断两个三角形全等的推理过程,叫做判断两个三角形全等的推理过程,叫做证明
2、三角形全等证明三角形全等已知已知ABC,画一个,画一个DEF,使,使 DE=AB,EF=BC,DF=AC1画线段画线段DE=AB;2分别以分别以D、E为圆心,线段为圆心,线段AC、BC为半径画弧,两弧交于点为半径画弧,两弧交于点F;3连接线段连接线段DF、EFDEABCFABCABCABCD例例1 已知已知ABC是一个钢架,是一个钢架,AB=AC,AD是连结点是连结点A与与BC中点中点D的支架求证:的支架求证:ABD ACD.证明:证明:点点D是是BC的中点,的中点,BD=CD在在ABD和和ACD中,中,AB=AC,AD=AD(公共边),(公共边),BD=CD,ABD ACD(SSS)在在AB
3、C中,中,AB=AC,D是是BC中点,中点,点点E在在AD上找出图上找出图中全等的三角形,并说中全等的三角形,并说明它们为什么是全等的?明它们为什么是全等的?(课本(课本45页页13题)题)DBCAE1已知:如图,已知:如图,ABAD,CB=CD 求证:求证:B=D在在ABC和和ADC中,中,ABC ADC(SSS)B=D(全等三角形的对应角相等)(全等三角形的对应角相等)证明:连结证明:连结AC,BCDAABAD,CBCD,ACAC(公共边),(公共边),证明:证明:BE=CF(已知),(已知),即即 BC=EF在在ABC和和DEF中,中,AB=DE(已知),(已知),AC=DF(已知),(
4、已知),BC=EF(已证),(已证),ABC DEF(SSS)A=D(全等三角形对应角相等)(全等三角形对应角相等)FABECD BE+EC=CF+EC,2如图,已知点如图,已知点B、E、C、F在同一条直线在同一条直线 上,上,AB=DE,AC=DF,BE=CF求证:求证:A=D(课本课本44页第页第9题)题)1了解三角形的稳定性;了解三角形的稳定性;2掌握三角形全等的条件:边边边(掌握三角形全等的条件:边边边(sss)3能运用全等三角形的条件,解决简单的能运用全等三角形的条件,解决简单的推理证明问题推理证明问题 已知已知ABC,画一个,画一个 ABC,使,使 AB=AB,BC=BC,B=BA
5、BC1画画B=B;2在射线在射线BO上截取上截取BC=BC,在射线在射线BF上截取上截取BA=BA3连接连接AC以点以点B为圆心,任意长为半径画弧,为圆心,任意长为半径画弧,分别交分别交BA、BC于点于点M、N;画一条射线画一条射线BO,以点,以点B为圆心,为圆心,BM长为半径画弧,交长为半径画弧,交BO 于点于点P;以点以点P为圆心,为圆心,MN长为半径画弧,长为半径画弧,与上步骤所画的弧交于点与上步骤所画的弧交于点Q;过点过点Q画射线画射线BF,则,则OBF=BABCABCMNOPQFABC(DEF(例例2如图,有一池塘,要测池塘两端如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取
6、一个可以直接到达的距离,可先在平地上取一个可以直接到达A和和B的点的点C,连接,连接AC并延长到并延长到D,使,使CD=CA连连接接BC并延长到并延长到E,使,使CE=CB连接连接DE,那么量,那么量出出DE的长就是的长就是A、B的距离为什么?的距离为什么?ABCDE证明:证明:在在ABC和和DEC中,中,CA=CD,ACB=DCE,CB=CE,ABC DEC(SAS),),AB=DE证明:证明:在在ABC 和和ADC中,中,AB=AD(已知),(已知),CB=CD(已知),(已知),AC=AC(公共边)(公共边)ABC ADC(SSS),),BAO=DAO(全等三角形的对应角(全等三角形的对
7、应角相等)相等)如右图,已知:如右图,已知:AB=AD,CB=CD求证:求证:ACBDACBDO在在ABO 和和ADO中,中,AB=AD(已知),(已知),BAO=DAO(已证),(已证),AO=AO(公共边),(公共边),ABO ADO(SAS),),AOB=AOD(全等三角形的对应(全等三角形的对应角相等)角相等)AOB=AOD=90 ACBD(垂直定义)(垂直定义)又又AOB+AOD=180(邻补角定义),(邻补角定义),306030606030两个角及这两个角及这两角的夹边分两角的夹边分别对应相等别对应相等两个角及其两个角及其中一角的对边中一角的对边分别对应相等分别对应相等已知:任意已
8、知:任意ABC,画一个,画一个ABC,使,使AB=AB,A=A,B=B画法:画法:1画画AB=AB,2在在AB的同旁画的同旁画DAB=A,E BA=B,AD、BE交于点交于点CABC就是所要画的三角就是所要画的三角形形ABCABCDE用符号语言表达为:用符号语言表达为:在在ABC与与DEF中,中,A=DAB=DE,B=E,ABC DEF(ASA)ABDECFABDECFC=180AB 在在DEF中,中,F=180-D-E又又 A=D,B=E,C=F在在ABC和和DEF中,中,A=D,AC=DF,C=F,ABC DEF(ASA)证明:证明:在在ABC中,中,ABDECF AD=AE(全等三角形的
9、对应边相等),(全等三角形的对应边相等),又又 AB=AC(已知(已知),),AB AD=AC AE即:即:BD=CEABEOCD证明:在证明:在ABE 和和ACD中中 A=A(公共角),(公共角),AB=AC(已知已知),),B=C(已知已知),),ABE ACD(ASA),),例例3 已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于点相交于点O,AB=AC,B=C求证:求证:BD=CEDCBAEF1已知:如图,点已知:如图,点B,F,C,E在同一条直在同一条直 线,线,FB=CE,ABED,ACFD,求证:求证:AB=DE,AC=DF 证明:证明:FB=CEBC=
展开阅读全文