2023年中考数学专题复习:二次函数综合压轴题(面积问题).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2023年中考数学专题复习:二次函数综合压轴题(面积问题).docx》由用户(523738114@qq.com)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 专题 复习 二次 函数 综合 压轴 面积 问题 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、2023年中考数学专题复习:二次函数综合压轴题(面积问题)1如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,连接,点E为线段上的一点,直线与抛物线交于点H(1)直接写出A,B,C三点的坐标,并求出直线的表达式;(2)连接,求面积的最大值;(3)若点P为抛物线上一动点,试判断在平面内是否存在一点Q,使得以B,C,P,Q为顶点的四边形是以为边的矩形?若存在,请直接写出点Q的坐标,若不存在,请说明理由2如图,已知抛物线与轴交于点和点,与轴交于点(1)求抛物线解析式;(2)若是抛物线对称轴上的一点,求周长的最小值;(3)点为第二象限抛物线上的动点,求四边形面积的最大值及此时点的坐标
2、;3如图,抛物线与x轴交于点和点B,与y轴交于点,顶点为D,连接,直线与抛物线的对称轴l交于点E(1)求抛物线的解析式;(2)求四边形的面积;(3)P是第一象限内抛物线上的动点,连接,设点P的横坐标为t当t为何值时,的面积最大?并求出最大面积;(4)在抛物线的对称轴l上是否存在点M,使得为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由,4如图,抛物线经过,D为线段下方抛物线上一动点,过点D做于G(1)求抛物线的函数表达式;(2)求面积的最大值;(3)连接,是否存在点D,使得中有一个角与相等?若存在,请求出点D的横坐标;若不存在,请说明理由5如图,抛物线(b,c是常数)的顶点为C
3、,与x轴交于A,B两点,(1)求该抛物线的解析式;(2)点P为线段上的动点,过P作交于点Q,求面积的最大值,并求此时P点坐标;(3)如图,设抛物线与y轴交于点D,平行于的直线交抛物线于点M,N,作直线交于点G,问点G是否在某一定直线上运动,若在求此直线的解析式,若不在说明理由6如图,二次函数的图象与轴交于两点,与轴交于点,点在抛物线上,轴且,直线是抛物线的对称轴,是抛物线的顶点(1)求、的值;(2)如图1,连,线段上的点关于直线l的对称点恰好在线段上,求点的坐标;(3)如图2,动点在线段上,过点作轴的垂线分别与交于点、与抛物线交于点试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?
4、若存在,求出点的坐标;若不存在,说明理由7如图,抛物线与轴相交于点,与轴交于点为线段上的一个动点,过点作轴的垂线,交直线于点,交该抛物线于点(1)求直线的表达式;(2)当为直角三角形时,求点的坐标;(3)当时,求的面积8如图,抛物线与轴交于点,点,与轴交于点(1)求抛物线的表达式;(2)在对称轴上找一点,使的周长最小,求点的坐标;(3)点是第四象限内抛物线上的一个动点,试求四边形面积的最大值9如图,抛物线与x轴交于,两点,与y轴交于点C(1)求该抛物线的解析式;(2)若点E是线段上的一个动点,平行于y轴的直线交抛物线于点F,求面积的最大值;(3)设点P是(1)中抛物线上的一个动点,是否存在满足
展开阅读全文