大学数学:微积分练习题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学数学:微积分练习题.doc》由用户(小魏子好文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 数学 微积分 练习题
- 资源描述:
-
1、微积分(1)练习题一 单项选择题1设存在,则下列等式成立的有( )A B C D 2下列极限不存在的有( )A B C D3设的一个原函数是,则( )A B C D 4函数在上的间断点为( )间断点。A跳跃间断点; B无穷间断点;C可去间断点; D振荡间断点 5 设函数在上有定义,在内可导,则下列结论成立的有( )A 当时,至少存在一点,使;B 对任何,有; C 当时,至少存在一点,使;D至少存在一点,使;6 已知的导数在处连续,若,则下列结论成立的有( )A是的极小值点; B是的极大值点; C是曲线的拐点; D不是的极值点,也不是曲线的拐点; 二 填空:1设,可微,则 2若,则 3过原点作曲
2、线的切线,则切线方程为 4曲线的水平渐近线方程为 铅垂渐近线方程为 5设,则 三 计算题:(1) (2) (3) (4) 求(5)求 四 试确定,使函数在处连续且可导。 五 试证明不等式:当时, 六 设,其中在上连续,在内存在且大于零,求证在内单调递增。 微积分练习题参考答案七 单项选择题1( B )2( C )3( A )4( C ) 5( B )6( B )八 填空:(每小题3分,共15分)1 2 3 4 , 5 ,三,计算题:(1) (2) (3) (4) 求 (5)求 又(九 试确定,使函数在处连续且可导。 (8分)解:, 函数在处连续 , (1)函数在处可导,故 (2)由(1)(2)知十 试证明不等式:当时, (8分)证:(法一)设 则由拉格朗日中值定理有 整理得:法二:设 故在时,为增函数,即设 故在时,为减函数,即综上,十一 设,其中在上连续,在内存在且大于零,求证在内单调递增。 (5分)证:故在内单调递增。 5
展开阅读全文