高中数学复习专题:直线的方程.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学复习专题:直线的方程.docx》由用户(小魏子好文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习 专题 直线 方程 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、9.1直线的方程最新考纲考情考向分析1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、斜截式、截距式、两点式及一般式),了解斜截式与一次函数的关系.以考查直线方程的求法为主,直线的斜率、倾斜角也是考查的重点题型主要在解答题中与圆、圆锥曲线等知识交汇出现,有时也会在选择、填空题中出现.1直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角当直线l与x轴平行或重合时,规定它的倾斜角为0.(2)范
2、围:直线l倾斜角的范围是0,180)2斜率公式(1)若直线l的倾斜角90,则斜率ktan_.(2)P1(x1,y1),P2(x2,y2)在直线l上且x1x2,则l的斜率k.3直线方程的五种形式名称方程适用范围点斜式yy0k(xx0)不含直线xx0斜截式ykxb不含垂直于x轴的直线两点式不含直线xx1 (x1x2)和直线yy1 (y1y2)截距式1不含垂直于坐标轴和过原点的直线一般式AxByC0(A2B20)平面直角坐标系内的直线都适用题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)根据直线的倾斜角的大小不能确定直线的位置()(2)坐标平面内的任何一条直线均有倾斜角与斜率()
3、(3)直线的倾斜角越大,其斜率就越大()(4)若直线的斜率为tan ,则其倾斜角为.()(5)斜率相等的两直线的倾斜角不一定相等()(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)表示()题组二教材改编2P86T3若过点M(2,m),N(m,4)的直线的斜率等于1,则m的值为()A1 B4C1或3 D1或4答案A解析由题意得1,解得m1.3P100A组T9过点P(2,3)且在两坐标轴上截距相等的直线方程为_答案3x2y0或xy50解析当截距为0时,直线方程为3x2y0;当截距不为0时,设直线方程为1,则1,解得a5.
4、所以直线方程为xy50.题组三易错自纠4(2018石家庄模拟)直线x(a21)y10的倾斜角的取值范围是()A. B.C. D.答案B解析由直线方程可得该直线的斜率为,又10,所以倾斜角的取值范围是.5如果AC0且BC0,在y轴上的截距0,故直线经过第一、二、四象限,不经过第三象限6过直线l:yx上的点P(2,2)作直线m,若直线l,m与x轴围成的三角形的面积为2,则直线m的方程为_答案x2y20或x2解析若直线m的斜率不存在,则直线m的方程为x2,直线m,直线l和x轴围成的三角形的面积为2,符合题意;若直线m的斜率k0,则直线m与x轴没有交点,不符合题意;若直线m的斜率k0,设其方程为y2k
5、(x2),令y0,得x2,依题意有22,即1,解得k,所以直线m的方程为y2(x2),即x2y20.综上可知,直线m的方程为x2y20或x2.题型一直线的倾斜角与斜率典例 (1)直线2xcos y30的倾斜角的取值范围是 ()A. B.C. D.答案B解析直线2xcos y30的斜率k2cos ,因为,所以cos ,因此k2cos 1, 设直线的倾斜角为,则有tan 1, 又0,),所以,即倾斜角的取值范围是.(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_答案(,1,)解析如图,kAP1,kBP,k(, 1,)引申探究1若将本例(2
6、)中P(1,0)改为P(1,0),其他条件不变,求直线l斜率的取值范围解P(1,0),A(2,1),B(0,),kAP,kBP.如图可知,直线l斜率的取值范围为.2若将本例(2)中的B点坐标改为(2,1),其他条件不变,求直线l倾斜角的取值范围解如图,直线PA的倾斜角为45,直线PB的倾斜角为135,由图象知l的倾斜角的范围为0,45135,180)思维升华 直线倾斜角的范围是0,),根据斜率求倾斜角的范围时,要分与两种情况讨论跟踪训练 已知过定点P(2,0)的直线l与曲线y相交于A,B两点,O为坐标原点,当AOB的面积取到最大值时,直线l的倾斜角为()A150 B135 C120 D不存在答
展开阅读全文