初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 中考 专题 复习 ppt 课件 折叠 问题 18 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、例例1:1:已知:在矩形已知:在矩形AOBCAOBC中,中,OB=4,OA=3OB=4,OA=3分别以分别以OB,OAOB,OA所在直所在直线为线为x x轴和轴和y y轴,建立如图所示的平面直角坐标系轴,建立如图所示的平面直角坐标系F F是边是边BCBC上上的一个动点(不与的一个动点(不与B,CB,C重合),过重合),过F F点的反比例函数点的反比例函数 的图象与的图象与ACAC边交于点边交于点E E请探索:是否存在这样的点请探索:是否存在这样的点F F,使得将,使得将CEFCEF沿沿EFEF对折对折后,后,C C点恰好落在点恰好落在OBOB上?上?若存在,求出点若存在,求出点F F的坐标;的
2、坐标;若不存在,请说明理由若不存在,请说明理由(0)kykxNM(4,)4k(,3)3k34k43k)3221,4(F探究型问题之“折叠问题”把条件集中到一把条件集中到一RtRt中,中,根据勾股定理得方程。根据勾股定理得方程。寻找相似三角形,根寻找相似三角形,根据相似比得方程。据相似比得方程。操作操作:如图,将矩形如图,将矩形ABCDABCD沿沿PEPE折叠,使点折叠,使点D D落在边落在边BCBC上的上的F F处,当点处,当点F F在在BCBC边上移动时,折痕两端点也边上移动时,折痕两端点也随之移动,若限定点随之移动,若限定点P,EP,E分别在分别在AD,CDAD,CD边上移动,且边上移动,
3、且AB=3,AD=5AB=3,AD=5,则,则F F点可移动的最大距离为点可移动的最大距离为_探究型问题之“折叠问题”ABDCEPFABDC(E)PF(P)33355412ABCDFE透过现象看本质透过现象看本质:折折叠叠轴轴对对称称实质实质轴对称性质:轴对称性质:ADEF1.图形的全等性:折叠前后的图形是全等形图形的全等性:折叠前后的图形是全等形.2.点的对称性:对称点连线被对称轴(折痕)垂直平分点的对称性:对称点连线被对称轴(折痕)垂直平分.由折叠可得:由折叠可得:1.AFEAFE ADEADE2.AEAE是是DFDF的中垂的中垂线线探究型问题之“折叠问题”探究型问题之“折叠问题”例例2
4、2:如图如图1 1,在长方形纸片,在长方形纸片ABCDABCD中,中,其中,其中 11,将它沿,将它沿EFEF折叠折叠(点(点E E、F F分别在边分别在边ABAB、CDCD上),使点上),使点B B落在落在ADAD边上的点边上的点M M处,点处,点C C落在点落在点N N处,处,MNMN与与CDCD相交于点相交于点P P,连接,连接EP.EP.设设 ,其中,其中0 0n1n1(1)(1)如图如图2 2,当,当 (即(即M M点与点与D D点重合),点重合),=2=2时,则时,则 =;(2)(2)如图如图3 3,当,当 (即(即M M为为ADAD的中点),的中点),的值发生变化时,求证:的值发
5、生变化时,求证:EP=AE+DPEP=AE+DP;(3)(3)如图如图1 1,当,当 (AB=2ADAB=2AD),),的值发生变化时,的值发生变化时,的值是否发生的值是否发生变化?说明理由变化?说明理由nADAMmBEAE12n 2m nBECFAMmABmAD35延长PM交EA延长线于G,则PDM GAM,EMP EMG.EP=EG=EA+AG=EA+DP.连接BM交EF于Q,过F作FHAB于H,EFBM,ABM=EFH,EFHMBA 的值不发生变化.HGQ1n m21ABHFAMEHAMCFBEAMCFBE 例例3 3:如图,已知直线如图,已知直线l l:y=kx+2y=kx+2,k k
6、0 0,与,与y y轴交于点轴交于点A A,与与x x轴交于点轴交于点B B,以,以OAOA为直径的为直径的PP交交ABAB于另一点于另一点D D,把弧,把弧ADAD沿直线沿直线ABAB翻转后与翻转后与OAOA交于点交于点E E。(1 1)当)当k=k=2 2时,求时,求OEOE的长的长(2 2)是否存在实数)是否存在实数k k,k k0 0,使沿直线,使沿直线ABAB把弧把弧ADAD翻转后翻转后所得的弧与所得的弧与OAOA相切?若存在,请求出此时相切?若存在,请求出此时k k的值,若不存的值,若不存在,请说明理由。在,请说明理由。54OE探究型问题之“折叠问题”1kHO(E)AO(G)(F)
7、B例例4 4:已知扇形已知扇形 AOB 的半径为的半径为 6,圆心角为,圆心角为 90,E 是半径是半径 OA 上一点,上一点,F 是是AB 上一点将扇形上一点将扇形 AOB 沿沿 EF 对折,使得折叠后的图形恰好与半径对折,使得折叠后的图形恰好与半径OB 相切于点相切于点 G 求:点求:点 E 可移动的最大距离是多少?可移动的最大距离是多少?O(G)EFBA()O变式变式1 1:若沿若沿EFEF向上翻折,折叠后向上翻折,折叠后的弧恰好过点的弧恰好过点O O,则,则E E点移动的最大点移动的最大距离是多少距离是多少?3323探究型问题之“折叠问题”OEABFG变式变式2 2:已知扇形已知扇形
展开阅读全文