《三角函数的诱导公式》说课稿参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《三角函数的诱导公式》说课稿参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数的诱导公式 三角函数 诱导 公式 说课稿 参考 模板 范本
- 资源描述:
-
1、三角函数的诱导公式说课稿一 说课标三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用。三角函数的诱导公式利用单位圆的对称性,让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,使得诱导公式(数)与单位圆(形)得到紧密结合,成为一个整体。正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简与恒等式证明,从中体会未知到已知、复杂到简单的转化过程。二 说教材本节课内容是学生已学习过的三角函数定义、同角
2、三角函数基本关系式及诱导公式一等知识的延续和拓展,又为以后的三角函数求值、化简、证明及解决有关的三角变换等方面打下基础。诱导公式是求三角函数值的基本方法,诱导公式的重要作用是把求任意角的三角函数值问题转化为求锐角的三角函数值问题。诱导公式的推导过程,体现了数学的数形结合和化归转化思想方法,反映了从特殊到一般的数学归纳思维形式。这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。针对上述分析,结合高中数学课程标准和教材,同时考虑到高一学生的认知规律,特制定如下教学目标、教学重点和难点。1.教学目标 (1)知识与技能目标:掌握三角函数的诱导公式,能正确运用公式解决一些三角
3、函数求值、化简和证明问题。 (2)过程与方法目标:借助图形让学生观察、发现、探究诱导公式,体会数形结合思想和转化思想在解决数学问题中的作用。通过公式的证明应用,培养学生的逻辑推理能力及运算能力。 (3)情感、态度与价值观目标:通过学习,让学生感受数学探索的成功感,从而激发学生学习数学的热情,培养学生学习数学的兴趣,增强他们学习数学的信心。2教学重点与难点 重点:诱导公式的发现、证明及运用。 难点:诱导公式的灵活运用。三 说教法 根据上述教材和目标分析,在教学中博采启发教学法、引探教学法、讲授教学法等诸多方法之长,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革。以问题为核心构建课堂教学
4、,培养问题意识,孕育创新精神,提出恰当的对学生的数学思维有适度启发的问题,引导学生的思考和探索活动,使他们经历观察、发现、推理、探究、交流等理性思维的基本过程,切实改进学生的学习方法。四 说学法 学生是学习的主体,教是为了使学生会学。教学中重视学生的主体参与,在诱导公式的推导和应用中通过学生的自主、合作、探究的学习过程来完成。培养学生发现问题、研究问题和分析问题的能力。五说教学过程1复习导入,发现问题复习前面所学内容,以便在本节学习中应用,并引发出问题。(1)利用单位圆表示任意角的三角函数(2)诱导公式一及其用途:提问:由公式一把任意角转化为0,360)内的角后,如何进一步求出它的三角函数值?
5、我们对0,90)范围内的角的三角函数值是熟悉的,组织学生思考讨论90 到360的角能否与锐角相联系?通过分析与的联系,引导学生得出解决设问的一种思路:若能把90,360)内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决,从而揭示本节课的课题。教师适时提出,这一思想就是数学的化归思想,并借此向学生介绍化归思想。学生通过分析,可归纳得出: 180- ,90,180) = 180+,180,270) 360- ,270,360)所以,我们只需研究180-,180+,360-的同名三角函数的关系即研究了与的关系了。思考:360-的终边与-的终边位置关系如何?从而得出应先研究-2共同探究,解
展开阅读全文