书签 分享 收藏 举报 版权申诉 / 87
上传文档赚钱

类型2021年重庆中考数学专题突破:20《 角度与线段的和差证明》ppt课件.pptx

  • 上传人(卖家):Q123
  • 文档编号:5379795
  • 上传时间:2023-04-03
  • 格式:PPTX
  • 页数:87
  • 大小:3.18MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021年重庆中考数学专题突破:20《 角度与线段的和差证明》ppt课件.pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    角度与线段的和差证明 2021年重庆中考数学专题突破:20 角度与线段的和差证明ppt课件 2021 重庆 中考 数学 专题 突破 20 角度 线段 证明 ppt 课件 下载 _二轮专题_中考复习_数学_初中
    资源描述:

    1、专题20角度与线段的和差证明目录1考法透析2考法示例2精题精练1考法透析上一页下一页返回导航2020年重庆数学中考第26题是相关证明,考查学生对几何图形的性质、判定的正确理解和应用.前几年以四边形为主,2014年是以三角形为基础的证明,2018年是以四边形为基础的证明.三角形与四边形可以根据图形的特征进行转化,比如有30、45、60等特殊角时,可由三角形构造平行四边形,也可将平行四边形转化为三角形.通过本专题的训练,培养学生对三角形有关的证明的能力,正确观察理解题目的含意,并根据所给条件、结合图形给出正确的证明过程.2考法示例上一页下一页返回导航与角有关的证明常见有“角平分线”“直角”“等腰直

    2、角三角形”“含30的直角三角形”;常用的方法有“对顶角”“邻补角”“余角”“补角”“三线八角”“8字形”“角平分线的性质”“直角三角形两锐角互余”“30角所对的直角边等于斜边的一半”“四点共圆”“三角形内角和为180”“多边形内外角和”等方法.类型1上一页下一页返回导航上一页下一页返回导航(2)如图2,将AEF绕点A逆时针旋转,旋转角为,M为线段EF的中点,连接DN,MN.当30120时,猜想DNM的大小是否为定值,并证明你的结论;(3)连接BN,在AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出ADN的面积.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航(2)结论:D

    3、NM120是定值.证明:如图,连接BE,CF.同法可证BAE CAF(SAS),ABEACF.ABCACB6060120,EBCBCFABCABEACBACF120.ENNC,EMMF,MNCF,上一页下一页返回导航ENMECF.BDDC,ENNC,DNBE,CDNEBC.ENDNDCNCD,DNMDNEENMNDCDCNECFEBCACBACFEBCBCF120.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航1.(2020南岸区校级期末)如图,点E为 ABCD中一点,EAED,AED90,点F,G分别为AB,BC上的点,连接DF,AG,ADAGDF,且AGD

    4、F于点H,连接EG,DG,延长AB,DG相交于点P.(1)若AH6,FH2,求AE的长;(2)求证:P45;(3)若DG2PG,求证:AGEEDG.变 式 训 练上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航PPAM45,AMPMDG.AEDAMD90,ANEMND,MAEGDE.又AEDE,AMDG,AEM DEG(SAS),EMEG,AEMDEG,AEDGEM90.上一页下一页返回导航又EMEG,EGMEMG45.ADAG,AGDADG,AGEEGM45AGEADEEDG45EDG,AGEEDG.上一页下一页返回导航与边有关的证明常见有

    5、“等腰三角形”“等边三角形”“等腰直角三角形”“特殊四边形”等;常用的方法有“对称”“旋转”“三线合一”“平行线法”“全等”“相似”“平行线分线段成比例”.类型2上一页下一页返回导航上一页下一页返回导航(2)如图2,若AE平分BAC,求证:FGHG;(3)如图3,点E在线段BO(含端点)上运动,连接HE,当线段HE长度取得最大值时,直接写出cosHDO的值.上一页下一页返回导航上一页下一页返回导航可得AMD67.5BFO,可得FGGM.由“ASA”可证AGM AGH,可得GMHGFG;(3)由题意可知,当点E与点B重合时,HE的长度有最大值,过点F作FNBD,利用OB分别表示FN,DN,FD,

    6、即可求解.上一页下一页返回导航上一页下一页返回导航(2)证明:如图,延长HG交AB于M.四边形ABCD是正方形,OABOBAOADODA45,ACBD,AODOBO.AE平分BAC,BAEEAO22.5,DEA9022.567.5DAE22.545,ADDEAB,ABAFDEOE,上一页下一页返回导航上一页下一页返回导航AMD67.5BFO,FGGM.BAEEAO,AGAG,AGHAGM90,AGM AGH(ASA),GMGH,FGHG.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航变 式 训 练上一页下一页返回导航上一页下一页返回导航AGEG,APEP.四边形ABCD是平行四边

    7、形,ADBC,GAEACB45,AGE是等腰直角三角形,即AGE90.PAE90GAE45,APEP,APE是等腰直角三角形,即APE90,APEPAGAGE90.上一页下一页返回导航又AGEG,四边形APEG是正方形,PFEF,APAGCH.又BFCF,BPCE.APG45BCF,APBHCE135,APB HCE(SAS),BAEH.又BABE,EBEH.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航(2)证明:作AQBE交DF的延长线于P,垂足为Q,连接PB、PE,如图所示.ABAE,AQBE,BQEQ,AP是BE的垂直平分线,PBPE,PBEPEB.又ABEAEB,ABP

    8、AEP.ABCD,AFCD,AFAB,BAF90.上一页下一页返回导航AQBE,ABGFAP.在ABG和FAP中,ABG FAP(ASA),AGFP.ABCD,ADBC,ABGFAP,AB=AF,BAGAFP=90,上一页下一页返回导航ABPBPC180,BCPD.又AEPPED180,BPCPED.在BPC和PED中,BPC PED(AAS),PCED,EDAGPCFPFC.BCPD,BPCPED,PB=PE,3精题精练上一页下一页返回导航1.在等腰直角ABC中,ABAC,BAC90,以CA为边在ACB的另一侧作ACMACB,点D为射线BC上任意一点,在射线CM上截取CEBD,连接AD、DE

    9、、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出ADE的度数;上一页下一页返回导航(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,作AHBC,垂足为H,作AGEC,垂足为G,连接HG,判断GHC的形状,并说明理由.上一页下一页返回导航解:(1)ADE45.ABAC,BAC90,ABCACB45.ACMACB,ACMABC.在ABD和ACE中,ABAC,ABCACE,BD=CE,上一页下一页返回导航ABD ACE(SAS),ADAE,CAEBAD,DAEBAC90,ADE

    10、45.上一页下一页返回导航(2)(1)中的结论成立.证明:BAC90,ABAC,BACB45.ACMACB,BACM45.在ABD和ACE中,ABAC,ABCACE,BD=CE,上一页下一页返回导航ABD ACE(SAS),ADAE,BADCAE,CAEDACBADDACBAC90,即DAE90.ADAE,ADEAED45.上一页下一页返回导航(3)CGH为等腰直角三角形.理由:如图.BCAACE45,GCH90.又AHBC,AGCE,AGAH.ACGGAC45,上一页下一页返回导航AGCG.ABAC,AHBC,HCAHAC45,AHHC,CHCG,CGH为等腰直角三角形.上一页下一页返回导航

    11、上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航(2)证明:如图,作GHBC,交CD于点H,则四边形AGHD为平行四边形,ADGH,ABHD,BGCH.EGAB,ABCD,FGCD,GFH90.AEBC,GHBC,AEGH,GAEAGH90.上一页下一页返回导航又FGHAGH90,GAEFGH.AEAD,GHAD,AEGH.在AGE和GFH中,AGE GFH(AAS),EGFHFCCH.又CHBG,EGBGFC.GAEFGH,AGEGFH90,AE=GH,上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下

    12、一页返回导航(1)解:如图,延长CB至H,使EHBC,连接DH.DBDE,DBEDEB,DEHDBC,且DEDB,EHBC,DEH DBC(SAS),DHDC.ABC是等边三角形,C60,ACBC,上一页下一页返回导航DHC是等边三角形,DCCH.CA AD3 7,设AD7a,AC3aBCEH,CDCH7a3a10a,BECHEHBC10a3a3a4a4,a1,ECEBBC4a3a7a7.上一页下一页返回导航(2)证明:证明:如图,延长CB至H,使EHBC,连接DH,延长BF至G,使BGBD.由(1),得DEH DBC,DHC是等边三角形,HDECDB,HDC60,HDBEDF.BGBD,DB

    13、F60,DBG是等边三角形,DBBGDG,BDGHDC60,上一页下一页返回导航HDBFDG,EDFFDG,且DEBDDG,DFDF,DEF DGF(SAS),EFFG,DEFDGB60,BFEFBFFGBGBD.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航(3)在(2)的条件下,若ACB45,直接写出线段AD,MC,AC的等量关系.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航(2)证明:如图,在MC上取一点P,使MPDE,连接AP.BDE是等边三角形,BED60,BEDE,DEC120,BEPM.AEAM,AEMAME,AEBAMP,ABE

    14、 APM(SAS),上一页下一页返回导航APMABC60,APC120DEC.过点M作AC的平行线交AP的延长线于Q,MPQAPC120DEC.ACCD,ADCDAC,CDE180BDEADC18060DAC120DAC.上一页下一页返回导航在ABC中,ACB180ABCDAC120DACCDE.MQAC,PMQACB,PMQEDC,MPQ DEC(ASA),MQCD,ACMQ,APC QPM(AAS),CPMP,CMMPCP2DE,即2DEMC.上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航190上一页下一页返回导航上一页下一页返回导航(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC4,则当ABM是直角三角形时,求线段AD的长.上一页下一页返回导航解:(1)190ABCDBE90,ABCABEDBEABE,即CBEABD.ACBBED45,ACBCAB45,BEDBDE45,ABCB,DBEB,ABD CBE(SAS),上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航上一页下一页返回导航

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年重庆中考数学专题突破:20《 角度与线段的和差证明》ppt课件.pptx
    链接地址:https://www.163wenku.com/p-5379795.html
    Q123
         内容提供者     

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库