2020年四川省成都地区中考数学第二部分系统复习专题15二次函数的综合运用2(共34张PPT) ppt课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年四川省成都地区中考数学第二部分系统复习专题15二次函数的综合运用2(共34张PPT) ppt课件.pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年四川省成都地区中考数学第二部分系统复习专题15二次函数的综合运用2共34张PPT ppt课件 2020 四川省 成都 地区 中考 数学 第二 部分 系统 复习 专题 15 二次 函数 综合 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、专题15 二次函数的综合运用2 2020春成都地区中考数学第二部分系统复习考点解读 存在性探索问题是运用几何计算进行探索的综合型问题,要注意相关的条件,可以先假设结论成立,然后通过计算求相应的值,再作存在性的判断.方法提炼 解决存在性问题通常分为三大步:一分类二画图三计算 平行四边形的存在性问题分为两类:三定一动和两定两动 三定一动的常用方法:过三个顶点分别作对边的平行线,三条直线的交点即要找的第四个点;两定两动常用方法:平移两定点所确定的线段,平移方向:左下、右下、左上、右上方法提炼 1 1在判定矩形、菱形或正方形时,要弄清是在“四边形”还是在“平行四边形”的基础上来求证的,要熟悉各种判定定
2、理的联系和区别,解题时要认真审题,通过仔细分析已知条件来确定用哪一种判定方法 2 2平行四边形、矩形、菱形和正方形之间的联系:(1)在平行四边形的基础上,增加条件“一个角是直角”或“对角线相等”,可得到矩形;(2)在平行四边形的基础上,增加条件“一组邻边相等”或“对角线互相垂直”,可得到菱形;方法提炼 (3)在平行四边形的基础上,要证该平行四边形是正方形,可以先证明它是矩形,再证明它是菱形,或先证明它是菱形,再证明它是矩形,即可得到正方形 3 3解决特殊四边形的存在性问题常用两种方法:几何法与代数法 几何法就是上面讲到的通过平移确定点的坐标 代数法:设动点的坐标,利用特殊四边形的对角线的交点是
3、两对角线的中点性质建立方程组,再加特殊四边形的边或者角的特点建立方程组,求解方程组即可.课堂精讲 例1(2019包头节选)如图,在平面直角坐标系中,已知抛物线yax2bx2(a0)与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的解析式,并写出它的对称轴;(2)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由课堂精讲 【分析】(1)将点A(1,0),B(3,0)代入yax2bx2即可;(2)根据平行四边形对边平行且相等的性质可以得到存在点M使得以
4、B,C,M,N为顶点的四边形是平行四边形课堂精讲【解】(1)将点 A(1,0),B(3,0)代入 yax2bx2,可得a23,b43,抛物线的解析式为 y23x243x2,对称轴 x1.(2)存在点 M 使得以 B,C,M,N 为顶点的四边形是平行四边形,设 N(1,n),M(x,y),四边形 CMNB 是平行四边形时,123x2,x2.M2,103;课堂精讲四边形 CNBM 时平行四边形时,321x2,x2.M(2,2);四边形 CNMB 时平行四边形时,132x2,x4.M4,103.综上,M 点的坐标为(2,2)或4,103或2,103.课堂精讲例2(2019齐齐哈尔)综合与探究 如图,
5、抛物线yx2bxc与x轴交于A,B两点,与y轴交于C点,OA2,OC6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当ACD的周长最小时,点D的坐标为_ (3)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由课堂精讲 【分析】(1)由OA2,OC6得到A(2,0),C(0,6),用待定系数法即求得抛物线解析式;(2)由点D在抛物线对称轴上运动且A,B关于对称轴对称可得,ADBD,所以当点C,D,B在同一直线上时,ACD周长最小求出直线BC解析式,把对称轴的横坐标代入即求得点D纵
6、坐标;(3)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N的坐标课堂精讲【解】(1)OA2,OC6,A(2,0),C(0,6)抛物线 yx2bxc 过点 A,C,42bc0,c6.解得b1,c6.抛物线解析式为 yx2x6.(2)12,5 课堂精讲(3)存在点 N,使以点 A,C,M,N 为顶点的四边形是菱形 A(2,0),C(0,6),AC 22622 10.若 AC 为菱形的边长,如图 1,则 MNAC 且 MNAC2 10.N1(2,2 10),N2(2,2 10),N3(2,0)图 1课堂精讲若 AC 为菱形的对角线,如图 2,则 AN4CM4,A
7、N4CN4.设 N4(2,n),n 22(n6)2,解得 n103.N42,103.综上,点 N 坐标为(2,2 10)或(2,2 10)或(2,0)或2,103.图 2 【方法归纳】本题考查了二次函数的图象与性质,轴对称求最短路径,一次函数的图象与性质,一次方程(组)的解法,菱形的性质,勾股定理第(3)题对菱形顶点存在性的判断,以确定的边AC进行分类,再画图讨论计算课后精练 1 1(2019周口二模)如图,在平面直角坐标系中,抛物线yax2bx4与x轴交于A,B两点(点A在原点左侧,点B在原点右侧),与y轴交于点C,已知OA1,OCOB.设E是该抛物线上位于对称轴右侧的一个动点,过点E作x轴
8、的平行线交抛物线于另一点F,过点E作EHx轴于点H,再过点F作FGx轴于点G,得到矩形EFGH,在点E的运动过程中,当矩形EFGH为正方形时,该正方形的边长 第1题图课后精练2 2已知,如图,抛物线yax2bxc(a0)的顶点为M(1,9),经过抛物线上的两点A(3,7)和B(3,m)的直线交抛物线的对称轴于点C.若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,满足条件的点P的坐标为_ _第2题图(6,-16)或课后精练3 3(2019 高 新 区 二 模)如 图,在 平 面 直 角 坐 标 系 中,二 次 函 数 yax2 bx3的 图 象 经 过 点 A(
展开阅读全文
链接地址:https://www.163wenku.com/p-5379372.html