2020年北京空中课堂初三数学:《解直角三角形》专题复习 ppt课件(共48张PPT).pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年北京空中课堂初三数学:《解直角三角形》专题复习 ppt课件(共48张PPT).pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解直角三角形 2020年北京空中课堂初三数学:解直角三角形专题复习 ppt课件共48张PPT 2020 北京 空中课堂 初三 数学 直角三角形 专题 复习 ppt 课件 48 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、解直角三角形 专题复习一、知识概要二、典型例题解直角三角形主要内容三、归纳小结一、知识概要两锐角间关系:90AB(直角三角形的两锐角互余)三边间关系:(勾股定理)边角间关系:(锐角三角函数)222a+b=csinaAccosbActanaAb一、知识概要直角三角形可解的条件:一、知识概要除直角外的5个元素中,任意给两个条件(至少一条边),此直角三角形可解.二、典型例题6例1.如图,在ABC中,B=45,AC=,AB=2,求BC的长456分析:过点A作ADBC于点D.26例1.如图,在ABC中,B=45,AC=,AB=2,求BC的长456分析:过点A作ADBC于点D.2222 BC=BD+CD
2、RtADB RtADC22例1反思:转化转化45B=135例1反思:例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB,连接CE (1)求证:四边形BECD是矩形;(2)连接DE交BC于点F,连接AF,若CE=2,DAB=30,求AF的长例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB,连接CE (1)求证:四边形BECD是矩形;矩形的判定方法:回顾有一个角是直角的平行四边形是矩形;三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB,连接CE (1)求证:四边形BECD是矩形;矩形
3、的判定方法:回顾有一个角是直角的平行四边形是矩形;三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB,连接CE (1)求证:四边形BECD是矩形;分析:ABCDBE=AB EBD=90DC/AB,DC=AB BECD 四边形BECD是矩形例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB,连接CE (1)求证:四边形BECD是矩形;证明:四边形ABCD是平行四边形,DC=AB,DC/AB 四边形BECD是矩形 EBD=90 又BE=AB,BE=DC,BE/DC 四边形BECD是平行四边形 ABD=90
4、,例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB (2)连接DE交BC于点F,连接AF,若CE=2,DAB=30,求AF的长例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB (2)连接DE交BC于点F,连接AF,若CE=2,DAB=30,求AF的长例2.如图,在ABCD中,ABD=90,延长AB至点E,使BE=AB (2)连接DE交BC于点F,连接AF,若CE=2,DAB=30,求AF的长例2.(2)分析:302 3DAB=30 ABCD CBE=30矩形BECD,CBE=30,CE=2BE=2 3 RtBEC中,AF=?BC=4,4 例2.(2)分析
5、:DAB=30 ABCD CBE=30矩形BECD,CBE=30,CE=2AF=?BE=2 3BC=4,RtBEC中,FBA中,ABF=1502,FB=2,AB=2 32 3例2.(2)分析:2 3DAB=30 ABCD CBE=30矩形BECD,CBE=30,CE=2AF=?BE=2 3BC=4,RtBEC中,13=2 333 322AFFHAH Rt FH AH RtFHB中=2 7过点F作FHAE于点H.FHA中,例2.(2)解:过点F作FHAE于点H.四边形ABCD是平行四边形,AD/BC.四边形BECD是矩形,CBE=DAB=30.CEB=90,在RtCEB中,可得2 3AB=BE=
6、.2 3 在RtBHF中,可得FH=1,BH=.3BC=4,BE=.BF=2,AH=.3 3222 7.AFFHAH1.2BFBC例2反思:转化转化例2反思:如图,AB是 O的直径,BC交 O于点D,E是弧BD的中点,连接AE交BC于点F,ACB=2EAB (1)求证:AC是 O 切线;(2)若cosC=,AC=,求BF的长35152如图,AB是 O的直径,BC交 O于点D,E是弧BD的中点,连接AE交BC于点F,ACB=2EAB (1)求证:AC是 O 切线;AC是 O 切线AB是 O的直径 BAC=90?如图,AB是 O的直径,BC交 O于点D,E是弧BD的中点,连接AE交BC于点F,AC
展开阅读全文