中考数学专题怎样秒杀二次函数压轴题(共21张PPT) ppt课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学专题怎样秒杀二次函数压轴题(共21张PPT) ppt课件.pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学专题怎样秒杀二次函数压轴题共21张PPT ppt课件 中考 数学 专题 怎样 二次 函数 压轴 21 PPT 课件 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、如何破解二次函数压轴题难学难教学生无从下手,老师视为畏途:1.面对此类问题,学生一般只完成前面一、二问,后面问题基本不看,即使优秀同学也非常恐惧;2.老师出于现实考量,一般放弃后面问题的讲解,一来实在难讲;二来风险太大,投入产出不成比例.二次函数压轴题面临的问题_1错失良机学生错失提升思维能力和水平的机会,在初中阶段,大多数同学的知识结构是零散的,不系统的.二次函数压轴题中渗透了函数的思想,方程的思想,数形结合的思想,分类讨论,类比归纳等数学思想,本人认为还应该加上一个极为重要的数学思想即:点、线、式.甚至我个人认为这个思想应该放在函数问题的首要位置.二次函数压轴题面临的问题_2(2015南昌
2、)如图,已知二次函数L1:和二次函数L2:图象的顶点分别为M,N,与 轴分别交于点E,F.(1)函数 的最小值为 _;当二次函数L1,L2 的y值同时随着x的增大而减小时,x的取值范围是_;(2)当EFMN.时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);(3)若二次函数L2 的图象与x轴的右交点为A(m,0),当AMN为等腰三角形时,求方程 的解.223(0)yaxaxaa223(0)yaxaxaa2(1)1(0)ya xa 点:E、F、M、N线:EF=MN;式:两点距离公式,求a点:A、M、N线:AM=AN,AM=MN,AN=MN式:两点距离公式,求m中考数学压轴题探究1(
3、2016江西)设抛物线的解析式为yax,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;过点Bn(,0)(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得RtAnBnBn+1。(1)求a的值;(2)直接写出线段AnBn,BnBn+1的长;(3)在系列RtAnBnBn+1中,探究下列问题:当n为何值时,RtAnBnBn+1是等腰直角三角形?设1kmn(k,m均为正整数),问:是否存在RtAkBkBk+1与RtAmBmBm+1相似?若存在,求出相似比,若不存在,说明理由.112n点:Bn,An,Bn+1,线:AnBn,Bn
4、Bn+1式:AnBn=BnBn+1点:Ak,Bk,Bk+1,Am,Bm,Bm+1线:AkBk,Bk Bk+1,AmBm,BmBm+1 式:1111kkkkkkkkmmmmmmmmA BB BA BB BA BB BB BA B或者中考数学压轴题探究212 中考数学压轴题探究 在直角坐标系中,我们常常遇到等腰直角三角形及45的构建问题。个人认为,在坐标系中解决问题,尽可能以代数思想为主,几何方法为辅。因此我开始探索此类问题代数化方法。开锁法也就应运而生了。将静态的几何问题,用动态的代数方法进行处理的一种手段。可广泛应用于等腰直角三角形及45的构建问题。主要通过构建一线三直角,利用全等处理。美中不
5、足之处在于辅助线构造繁杂,特别在涉及参数的分类讨论时,容易出现漏解。传统方法开锁法探索“开锁法”的基本步骤例1:A(4,1),若将点A绕原点旋转90得到点B,求点B坐标.显然点B的坐标为(1,4)或(1,4)注意此时B1,B2存在对称关系例2:A(a,b),若将点A绕原点旋转90得到点B,求点B坐标.点B的坐标为(b,a)或(b,a)一般情况下“开锁法”例3:如图,已知ABC是以点C为直角顶点的等腰直角三角形,A(1,3),C(2,2),求点B坐标。因为ABC是等腰直角三角形点B可视为点A绕点C顺时针旋转90而成将点C(2,2)平移到原点C(0,0)则点A(1,3)平移后对应点为A(3,1)将
6、点A(3,1)绕原点顺时针旋转90得点B(1,3),将点C 平移回点C(2,2),所以点B(1,3)平移后即为点B(3,5)解:任意情况下“开锁法”解:例4:如图,已知ABC是以点C为直角顶点的等腰直角三角形,A(a,b),C(c,d),求点B坐标。ABC是等腰直角三角形点B可视为点A绕点C顺时针旋转90而成将点C(c,d)平移到原点C(0,0)则点A(a,b)平移后为A(ac,bd)将点A绕原点顺时针旋转90,得点B(bd,ca)将点C(0,0)平移回点C(c,d)点B(bd,ca)平移后即为点BB点坐标为(bdc,cad)“开锁法”基本步骤此问题分三种情况:1.若两定点已知,可直接通过“开
7、锁法”确定第三点坐标;2.一定点一动点,可直接通过“开锁法”确定第三点参数坐标;3.同一参数两动点,可直接通过“开锁法”确定第三点参数坐标。【开锁法】第一步,将等腰直角三角形直角顶点平 移至原点位置;第二步,将斜边上一点绕原点旋转90;第三步,将等腰直角三角形平移回原位,求出另一点坐标。【开锁过程】第一步,将钥匙平移至锁眼位置;第二步,将钥匙绕锁眼旋转90;第三步,将钥匙平移回原位,开 锁过程结束。类比一下整个过程,两者是否有异曲同工之妙。“开锁法”示例_1(黑龙江松北区)抛物线 与直线 交于C、D两点,点P是y轴右侧抛物线上一个动点,过点P作PEx轴于点E,交直线CD于点F是否存在点P,使P
8、CF45,若存在,求出点P的坐标;若不存在,说明理由.2722yxx 122yx122yx“开锁法”示例_1(2014黑龙江松北区)抛物线 与直线 交于C、D两点,点P是y轴右侧抛物线上一个动点,过点P作PEx轴于点E,交直线CD于点F是否存在点P,使PCF45,若存在,求出点P的坐标;若不存在,说明理由.2722yxx 122yx“开锁法”示例_1(2014黑龙江松北区)抛物线 与直线 交于C、D两点,点P是y轴右侧抛物线上一个动点,过点P作PEx轴于点E,交直线CD于点F是否存在点P,使PCF45,若存在,求出点P的坐标;若不存在,说明理由.2722yxx 122yx122yx002121
9、,.90(2,2)(0,0)(2,)90(,2)(,32)(,32)7232211 70(),.(,).22 2PHCDHPHCPCHCDHm mHHCmmCP mmHHPP mmP mmmmmmmPQ作垂足为显然为等腰直角三角形点 可视为点 绕点顺时针旋转而成点 在直线上,设将 平移至原点,则将绕原点顺时针旋转,则将平移至 点,则平移后即为把代入抛物线,舍223 13(,)6 18P同理“开锁法”示例_2(2017深圳)如图,抛物线 经过点A(1,0),B(4,0),交y轴于点C;将直线BC绕点B顺时针旋转45,与抛物线交于另一点E,求BE的长.213222yxx 2222,.,41,.23
展开阅读全文