《弧长及扇形的面积》教学设计参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《弧长及扇形的面积》教学设计参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弧长及扇形的面积 扇形 面积 教学 设计 参考 模板 范本
- 资源描述:
-
1、弧长及扇形的面积教学设计弧长及扇形的面积教学设计 【教学内容】鲁教版九年级下册第五章圆第九节弧长及扇形面积P53P56.【课标分析】 课标要求:会计算圆的弧长、扇形的面积。课标对本节的要求是会计算,对于弧长和扇形面积公式要由学生独立分析得出,帮助学生更好地理解公式。课标还要求:通过义务教育阶段的数学学习,学生能:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。3. 了解数学的价值,提高学习数学的兴趣,增强学好数
2、学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。 因此,本节课以制作圆锥形圣诞帽为主线,引导学生思考: 如何做扇形? 弧长与圆心角、半径有什么关系? 如何做圆锥帽? 至少需要准备多少纸? 扇形面积如何求? 如何进行装饰? 求弓形面积让学生感悟数学来源于生活,并服务于生活。充分发挥学生的主体地位,让学生积极主动地思考。 【教材分析】本节课是鲁教版九年级下册第五章圆的第九节弧长及扇形面积内容。在学生对圆有了一定的认识后,再进一步研究弧长及扇形面积的计算。同时,本课时内容也在为下一课时圆锥的侧面积做铺垫。因此,本节课设计了制作圆锥形圣诞帽的活动,由生活情境入手,激发学生学习兴趣
3、,并引导学生主动思考,运用数学知识解决实际问题。【学情分析】学生在小学阶段已经学过求圆的周长及面积的计算公式,在此基础上,可以借助扇形圆心角所占360的百分比探究圆心角所对弧长、扇形的面积。初一阶段对圆锥的侧面展开图是扇形等知识也有一定的了解,但是需要一定的空间想象能力,部分学生依然存在困难,因此设计动手做圆锥帽的活动,帮助学生进一步积累感性认识,形成空间观念。初四学生具有一定的发现和分析问题的能力,对于身边的事物充满了好奇心和探究欲,大部分同学能积极主动发表自己的见解,但在思维方式上不够深刻、不够全面。因此本课设计了制作圆锥帽的活动,引导学生发现问题并及时思考。【教学目标】1、通过圆锥形圣诞
4、帽的裁剪,探究发现弧长公式,并能应用公式,解决实际问题。2、通过类比弧长公式的探究方法,思索得出扇形面积公式,及扇形面积与弧长的关系,能在具体的问题解决中选择恰当的方法,解决问题。3、通过探究活动,体会数学源于生活而服务于生活,渗透“用数学”的理念和转化的数学思想。【重点、难点】重点:探究得出弧长、扇形面积公式难点:灵活运用转化的方法求弓形面积【评价设计】1、通过小组展示评价学生是否能探究得出弧长公式,并利用数学知识应用一评价目标1的达成情况。2、通过提问和数学知识应用二评价目标2达成情况。3、通过实际应用题评价学生是否能灵活运用转化的方法求弓形的面积,评价目标3的达成情况。【教学过程】教学程
5、序教师活动 学生活动设计意图创设情景引发思考师:上课前我们先来听段音乐。 播放视频铃儿响叮当这段音乐什么时候最常听到?再过两个周就过圣诞节了,我们做个圣诞帽送给自己,好不好? 师:这是我做的圣诞帽。什么形状? 我给大家也准备了卷尺、纸和剪刀。在动手前,想一想要做圆锥形圣诞帽需要哪些数据?下面动手做你的圆锥帽吧!(为了美观,半径一般为弧长的一半。)(学生存在困难)师追问:谁有办法画出来?还需要确定什么量?已知半径和弧长,能不能确定圆心角? 圣诞节学生观察教师演示,得出要做圆锥帽,需要做出一个扇形,但为了保证大小合适,还需要测量头围(弧长)、半径。学生测量头围,并算出半径,但画不出弧。想要画出弧,
6、还需要圆心角。由圣诞节导入,引导学生思考如何做圣诞帽,问题来源于生活,贴近学生实际,能够激发学生的探索欲和求知欲。 在动手做圆锥帽前,先思考需要哪些数据。当有了弧长和半径后,依然做不出所需扇形。在动手操作的过程中,发现需要确定圆心角。由生活问题自然而然地引出数学问题已知半径和弧长,能不能确定圆心角。尝试发现探索新知尝试发现探索新知拓展应用解决问题师过渡:这时,就需要我们用数学知识解决。请看学习目标一:通过圆锥形圣诞帽的裁剪,探究发现弧长公式,并能应用公式,解决实际问题。完成导学案探究任务一:探究弧长、半径、圆心角的关系并在小组内交流。(1) 半径为R的圆,周长C= (2) 圆的周长可以看作是
展开阅读全文