2021年浙江省中考数学一轮复习ppt课件:第15课时 二次函数的应用.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年浙江省中考数学一轮复习ppt课件:第15课时 二次函数的应用.pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 浙江省 中考 数学 一轮 复习 ppt 课件 15 课时 二次 函数 应用 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、第15课时二次函数的应用课标要求1.通过对实际问题的分析,体会二次函数的意义.2.能利用二次函数解决简单实际问题.考点二次函数在实际生活中的应用图15-1答案B 知识梳理利用二次函数解决生活中的实际问题时,一般先根据题意建立二次函数表达式,并确定自变量的取值范围,然后利用二次函数的图象与性质解决问题.考向一应用二次函数解决抛物线形问题例12020绍兴如图15-2,排球场长为18 m,宽为9 m,网高为2.24 m.队员站在底线O点处发球,球从点O的正上方1.9 m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88 m,即BA=2.88 m,这时水平距离OB=7 m.以直
2、线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图.图15-2解:(1)设抛物线的表达式为y=a(x-7)2+2.88,将x=0,y=1.9代入上式并解得:a=-0.02,故抛物线的表达式为y=-0.02(x-7)2+2.88.当x=9时,y=-0.02(9-7)2+2.88=2.82.24,当x=18时,y=-0.02(18-7)2+2.88=0.460,故这次发球过网,但是出界了.【方法点析】解决此类问题的一般步骤:(1)合理建立直角坐标系,把已知数据转化为点的坐标;(2)根据题意,把所求问题转化为求最值或已知x的值(范围)求y的值(范围)的问题.考向精练1.2020台州用各种盛水容器
3、可以制作精致的家用流水景观(如图15-3).科学原理:如图,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H-h).图15-3应用思考:现用高度为20 cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离h cm处开一个小孔.(1)写出s2与h的关系式,并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同
4、,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16 cm,求垫高的高度及小孔离水面的竖直距离.图15-3(1)写出s2与h的关系式,并求出当h为何值时,射程s有最大值,最大射程是多少?解:(1)s2=4h(H-h),当H=20时,s2=4h(20-h)=-4(h-10)2+400,当h=10时,s2有最大值400,即s有最大值20.当h=10时,射程s有最大值,最大射程是20 cm.(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(2)由题意得4a(20-a)=4b(20-b),20a-a2=20b-
5、b2,a2-b2=20a-20b,(a+b)(a-b)=20(a-b),(a-b)(a+b-20)=0,a-b=0或a+b-20=0,a=b或a+b=20.(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16 cm,求垫高的高度及小孔离水面的竖直距离.2.2018衢州某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图15-4所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式.(2)王师傅在水池内维修设备期间
6、,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?图15-4(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.图15-42.2018衢州某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图15-4所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线
展开阅读全文