2023年九年级中考数学专题复习:二次函数综合压轴题(特殊四边形问题).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2023年九年级中考数学专题复习:二次函数综合压轴题(特殊四边形问题).docx》由用户(meimeiwenku)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 九年级 中考 数学 专题 复习 二次 函数 综合 压轴 特殊 四边形 问题 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、2023年九年级中考数学专题复习:二次函数综合压轴题(特殊四边形问题)1如图,直线与抛物线交于A,B两点,其中点B的坐标是(1)求直线及抛物线的解析式;(2)C为直线下方的抛物线上一点,过点C作,垂足为D,求的最大值;(3)P在抛物线上,Q在直线上,M在坐标平面内,当以A,P,Q,M为顶点的四边形为正方形时,直接写出点M的坐标2综合与探究如图,二次函数的图像经过轴上的点和轴上的点,且对称轴为直线(1)求二次函数的解析式(2)点E位于抛物线第四象限内的图像上,以,为边作平行四边形当平行四边形为菱形时,求点的坐标与菱形的面积(3)连接,在直线上是否存在一点,使得与相似,若存在,请直接写出点坐标,若
2、不存在,请说明理由3已知抛物线与轴交于点和,与轴交于点,为坐标原点,且(1)求抛物线的解析式;(2)如图1,点是线段上的一个动点(不与点、重合),过点作轴的垂线交抛物线于点,连接当四边形恰好是平行四边形时,求点的坐标;(3)如图2,在(2)的条件下,是的中点,过点的直线与抛物线交于点,且,在直线上是否存在点,使得与相似?若存在,求点的坐标:若不存在,请说明理由4如图,已知抛物线与x轴交,与y轴交于点C(1)求抛物线解析式;(2)若点P是直线下方抛物线上一点,且位于对称轴左侧,过点P作于点D,作轴交抛物线于点E,求的最大值及此时点P的坐标;(3)将抛物线向左平移2个单位长度得到新抛物线,平移后的
3、抛物线与原抛物线交于点Q,点M是原抛物线对称轴上一点,点N是新抛物线上一点,请直接写出使得以点B,Q,M,N为顶点的四边形是平行四边形的点M的坐标,并写出其中一个点M的求解过程5如图已知抛物线经过三点,点P为直线上方抛物线上一点(1)求抛物线的解析式;(2)当时,求点P的坐标;(3)连接,交直线于点E,交y轴于点F;是否存在点P使与相似,若存在,求出点P的坐标,若不存在,请说明理由;若点P的坐标为,点H在抛物线上,过H作轴,交直线于点K点Q是平面内一点,当以点E,H,K,Q为顶点的四边形是正方形时,请直接写出点Q的坐标6如图,抛物线与x轴分别相交于A,B两点(点A在点B的左侧),C是的中点,平
4、行四边形的顶点D,E均在抛物线上(1)直接写出点C的坐标;(2)如图(1),若点D的横坐标是,点E在第三象限,平行四边形的面积是13,求点F的坐标;(3)如图(2),若点F在抛物线上,连接,求证:直线过一定点7如图1,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点(1)求该抛物线的解析式;(2)点为直线上方抛物线上的一点,过点作轴的平行线交于点,过点作轴的平行线交于点,求的最大值以及此时点的坐标;(3)如图2,将抛物线沿射线的方向平移,使得平移后的抛物线经过线段的中点,且平移后抛物线的对称轴与轴交于点,是直线上任意两点,为新抛物线上一点,直接写出所有使得以点,为顶点的四边形是平行四边形的
5、点的横坐标8如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,;矩形的边在线段的上,点A、D在抛物线上(1)求这条抛物线的解析式;(2)设点D的横坐标是m,矩形的周长为L,求L与m的关系式,并求出L的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,求F点的坐标9如图,抛物线经过,两点,与轴交于点,在直线上滑动,以为斜边,在的下方作等腰直角(1)求抛物线的解析式;(2)当与抛物线有公共点时,求点的横坐标的取值范围;(3)在滑动过程中是否存在点,使以,为顶点的四边形为菱形,若存在,直接写
展开阅读全文