书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型导数的概念及其意义同步练习-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册.docx

  • 上传人(卖家):meimeiwenku
  • 文档编号:5245477
  • 上传时间:2023-02-22
  • 格式:DOCX
  • 页数:7
  • 大小:98.73KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《导数的概念及其意义同步练习-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册.docx》由用户(meimeiwenku)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    导数 概念 及其 意义 同步 练习 2022 2023 学年 下学 期数 学人 2019 选择性 必修 第二 下载 _选择性必修 第二册_人教A版(2019)_数学_高中
    资源描述:

    1、5.1 导数的概念及其意义第I卷(选择题)一、单选题1. 一质点按规律s=2t3运动,则其在时间段1,2内的平均速度为_m/s,在t=1时的瞬时速度为_m/s.()A. 12,3B. 10,5C. 14,6D. 16,62. 某水库储水量与水深的关系如下表所示:水深/m05101520253035储水量/104m30103090160275435650在35m范围内,当水深每增加5m时,水库储水量的平均变化率()A. 不变B. 越来越小C. 越来越大D. 不能确定3. 设函数y=fx,当自变量x由x0改变到x0+x时,函数的改变量y是()A. fx0+xB. fx0+xC. fx0xD. fx

    2、0+x-fx04. 函数y=fx的图象如图所示,f(x)是函数fx的导函数,则下列大小关系正确的是()A. 2f(4)f(4)-f(2)2f(2)B. 2f(2)f(4)-f(2)2f(4)C. 2f(4)2f(2)f(4)-f(2)D. f(4)-f(2)2f(4)0时,该物体在时间段1,1+t内的平均速度为()A. 2m/sB. tm/sC. (t)2+1)m/sD. (2+t)m/s8. 已知过点A(a,0)作曲线C:y=xex的切线有且仅有1条,则实数a的取值是()A. 0B. 4C. 0或-4D. 0或49. 已知曲线y=x3在点P处的切线的斜率k=3,则点P的坐标是()A. (1,

    3、1)B. (-1,1)C. (1,1)或(-1,-1)D. (2,8)或(-2,-8)10. 若函数f(x)=lnx与函数g(x)=x2+2x+a(x0)有公切线,则实数a的取值范围是()A. ln12e,+B. -1,+C. 1,+D. -ln2,+二、多选题11. 直线运动的物体,从时刻t到t+t时,物体的位移为s,那么关于limt0st的下列说法错误的是()A. 从时刻t到t+t时物体的平均速度B. 从时刻t到t+t时位移的平均变化率C. 当时刻为t时该物体的速度D. 该物体在t时刻的瞬时速度12. 如图显示物体甲、乙在时间0到t1范围内路程的变化情况,下列说法正确的是()A. 在0到t

    4、0范围内,甲的平均速度大于乙的平均速度B. 在0到t0范围内,甲的平均速度等于乙的平均速度C. 在t0到t1范围内,甲的平均速度大于乙的平均速度D. 在t0到t1范围内,甲的平均速度小于乙的平均速度13. 下列命题中是真命题有()A. 若fx0=0,则x0是函数fx的极值点B. 函数y=fx的切线与函数可以有两个公共点C. 函数y=fx在x=1处的切线方程为2x-y=0,则当x0时,f1-f1+x2x=1D. 若函数y=fx的导数fxx+1的解集是-,114. 已知曲线y=x3在点P处的切线的斜率k=12,则点P的坐标可以是()A. (1,1)B. (-1,-1)C. (2,8)D. (-2,

    5、-8)15. 小明从家里到学校行走的路程S与时间t的函数关系表示如图,记t时刻的瞬时速度为V(t),区间0,t1,0,t2,t1,t2上的平均速度分别为V1,V2,V3,则下列判断正确的有()A. V1V2V2C. 对于Vi(i=1,2,3),存在mi(0,t2),使得V(mi)=ViD. 整个过程小明行走的速度一直在加快第II卷(非选择题)三、填空题16. 已知一质点的运动方程为s=2-t2,则该质点在一段时间0,2内的平均速度为17. 某个弹簧振子在振动过程中的位移y(单位:mm)与时间t(单位:s)之间的关系y=16sin(56t+2),则该振子在t=6s时的瞬时速度为mm/s18. 已

    6、知曲线f(x)=2x2+1在点M(x0,f(x0)处的瞬时变化率为-8,则点M的坐标为19. 函数f(x)=(x+1)lnx在点(1,f(1)处的切线方程为_20. 如图,直线l是曲线y=f(x)在点(4,f(4)处的切线,则f(4)+f(4)的值等于四、解答题21. 已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s)(1)当t=2,t=0.01时,求st;(2)当t=2,t=0.001时,求st;(3)求质点M在t=2时的瞬时速度22. 求下列直线的方程:(1)曲线y=x3+x2+1在P(-1,1)处的切线;(2)曲线y=x2过点P(3,5)的切线23.若存在过点P(0

    7、,-2)的直线与曲线y=x3和曲线y=ax2+4x-1都相切,求实数a的值24. 若一物体运动方程如下:(位移单位:m,时间单位:s)s=f(t)=29+3(t-3)2,0t0)上的一个动点,求点P到直线x+y=0距离的最小值;(2)已知函数fx=x3,求此函数的图象过点B1,0的切线方程1、C;2、C;3、D;4、B;5、B;6、B;7、D;8、C;9、C;10、A;11、ABC;12、BC;13、BD;14、CD;15、ABC;16、-2;17、0;18、(-2,9);19、y=2x-2;20、11221、解:st=s(t+t)-s(t)t=2(t+t)2+3-(2t2+3)t=4t+2t

    8、(1)当t=2,t=0.01时,st=42+20.01=8.02(cm/s);(2)当t=2,t=0.001时,st=42+20.001=8.002(cm/s);(3)v=limt0st=limt0(4t+2t)=4t=42=8(cm/s)22、(1)解:y=x3+x2+1的导数为y=3x2+2x,可得在P(-1,1)处的切线斜率为k=3-2=1,即有切线的方程为y-1=x+1,即为x-y+2=0;(2)解:曲线y=x2的导数为y=2x,设切点为(m,m2),可得切线的斜率为2m,切线的方程为y-m2=2m(x-m),代入(3,5),可得5-m2=2m(3-m),解得m=1或m=5,可得切线的

    9、方程为2x-y-1=0或10x-y-25=023、解:设过点P(0,-2)的直线与曲线y=x3的切点为(m,m3),曲线y=x3的导数y=3x2故切线方程为:y-m3=3m2(x-m),将(0,-2)代入上式得:-2-m3=3m2(-m),m3=1,m=1,故切线为:y=3x-2,代入y=ax2+4x-1整理得:ax2+x+1=0a0,因为直线与曲线相切,所以=1-4a=0,解得a=14即实数a的值为1424、解:(1)因为物体在t3,5内的时间变化量为t=5-3=2,位移变化量为s=352+2-(332+2)=3(52-32)=48,所以物体在t3,5内的平均速度为st=482=24m/s即

    10、物体在t3,5内的平均速度为24m/s(2)求物体的初速度v0,即求物体在t=0时的瞬时速度因为物体在t=0附近位移的平均变化率为st=f(0+t)-f(0)t=29+3(0+t)-32-29-3(0-3)2t=3t-18,所以物体在t=0处位移的瞬时变化率为limt0st=limt0(3t-18)=-18,即物体的初速度v0=-18m/s(3)物体在t=1时的瞬时速度即为物体在t=1处位移的瞬时变化率,因为物体在t=1附近位移的平均变化率为st=f(1+t)-f(1)t=29+3(1+t)-32-29-3(1-3)2t=3t-12,所以物体在t=1处位移的瞬时变化率为limt0st=limt

    11、0(3t-12)=-12,即物体在t=1时的瞬时速度为-12m/s25、解:(1)当直线x+y=0平移到与曲线y=x+4x(x0)相切位置时,切点Q(即为点P)到直线x+y=0的距离最小,由y=1-4x2=-1,而x0,解得x=2,此时y=32,即切点Q(2,32),则切点Q到直线x+y=0的距离为|2+32|12+12=4,所以点P到直线x+y=0距离的最小值为4(2)设过点B1,0的曲线y=f(x)的切线对应切点为x0,x03,求导得:fx=3x2,有fx0=3x02,切线方程为y-x03=3x02x-x0,而切线过点B1,0,则有-x03=3x02(1-x0),即3x02-2x03=0,解得x0=0或x0=32,当x0=0时,切线方程为y=0,当x0=32时,切线方程为y=274(x-1),即27x-4y-27=0,所以所求切线方程为y=0或27x-4y-27=07

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:导数的概念及其意义同步练习-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册.docx
    链接地址:https://www.163wenku.com/p-5245477.html
    meimeiwenku
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库