人教版九年级数学上册 21.2 解一元二次方程 同步学案(无答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级数学上册 21.2 解一元二次方程 同步学案(无答案).doc》由用户(伏特加)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版九年级数学上册 21.2 解一元二次方程 同步学案无答案 人教版 九年级 数学 上册 一元 二次方程 同步 答案 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、2019-2020学年人教版九年级数学上册 21.1 一元二次方程 同步学案一解一元二次方程-直接开平方法形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程如果方程化成x2=p的形式,那么可得x=;如果方程能化成(nx+m)2=p(p0)的形式,那么nx+m=注意:等号左边是一个数的平方的形式而等号右边是一个非负数降次的实质是由一个二次方程转化为两个一元一次方程方法是根据平方根的意义开平方例1解方程:(y+2)260【分析】先把给出的方程进行整理,再利用直接开方法求出解即可【解答】解:(y+2)260,(y+2)212,y+22,y122,y222【点评
2、】此题考查了解一元二次方程直接开平方法,熟练掌握各种解法是解本题的关键二解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法(2)用配方法解一元二次方程的步骤:把原方程化为ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解例2解方程:x(x2)4【分析】根据一元二次方程的解法即可求出答案【
3、解答】解:x(x2)4,x22x4,x22x+15,(x1)25,x1【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型三解一元二次方程-公式法(1)把x=-bb2-4ac2a(b2-4ac0)叫做一元二次方程ax2+bx+c=0(a0)的求根公式(2)用求根公式解一元二次方程的方法是公式法(3)用公式法解一元二次方程的一般步骤为:把方程化成一般形式,进而确定a,b,c的值(注意符号);求出b2-4ac的值(若b2-4ac0,方程无实数根);在b2-4ac0的前提下,把a、b、c的值代入公式进行计算求出方程的根注意:用公式法解一元二次方程的前提条件有两个:a
4、0;b2-4ac0例3解方程:3x2+6x1【分析】移项后求出b24ac的值,再代入公式求出即可【解答】解:3x2+6x1,3x2+6x10,b24ac624(3)(1)24,x,x1,x2【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键四解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一
5、元二次方程转化为解一元一次方程的问题了(数学转化思想)(2)因式分解法解一元二次方程的一般步骤:移项,使方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为零,得到两个一元一次方程;解这两个一元一次方程,它们的解就都是原方程的解例4解方程:x23x2【分析】根据因式分解法即可求出答案【解答】解:x23x+20,(x1)(x2)0,x1或x2;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型五换元法解一元二次方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法换元的实质是转化,关键是构造元和设元,
6、理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的例5解方程:(x1)25(x1)+40【分析】设x1y,则原方程可化为y25y+40,解得y的值,即可得到原方程的根【解答】解:设x1y,则原方程可化为y25y+40解得:y11,y24当y1时,x11,解得x2,当y4时,x14,解得x5,原方程的根是x12,x25【
7、点评】本题主要考查了运用换元法解一元二次方程以及分式方程,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法六根的判别式利用一元二次方程根的判别式(=b2-4ac)判断方程的根的情况一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立例6已知关于x的一元二次方程ax2+bx+30,当ba+3时,请判断此方程根的情况【分析】先计算出判别式的值,再把ba+3代入得到(a+3)212a(a3)20,然后根据判别式的意义判断方程根
8、的情况【解答】解:b24a3b212a,而ba+3,所以(a+3)212a(a3)20,所以方程有两个实数根【点评】本题考查了根的判别式:一元二次方程ax2+bx+c0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程无实数根七根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q,反过来可得p=-(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax
展开阅读全文