二次函数中矩形的存在性问题 2023年九年级数学中考复习.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二次函数中矩形的存在性问题 2023年九年级数学中考复习.docx》由用户(523738114@qq.com)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数中矩形的存在性问题 2023年九年级数学中考复习 二次 函数 矩形 存在 问题 2023 九年级 数学 中考 复习 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、二次函数中矩形的存在性问题 2023九年级数学中考复习1如图所示,二次函数的图象与轴的一个交点为,另一交点为,且与轴交于点(1)求的值;(2)求点的坐标;(3)该二次函数图象上有一点(其中,使,求点的坐标;(4)若点在直线上,点是平面上一点,是否存在点,使以点、点、点、点为顶点的四边形为矩形?若存在,请你直接写出点的坐标;若不存在,请说明理由2如图,抛物线与轴交于,两点,与轴交于点点在该抛物线上,直线与轴相交于点,点是直线上方的抛物线上的动点(1)求该抛物线对应的二次函数的关系式;(2)当点到直线距离最大时,求点的坐标;(3)如图,点是抛物线的顶点,点的坐标为,点是坐标平面内一点,以,为顶点的
2、四边形是为边的矩形求的值;若点和点关于所在直线对称,求点的坐标3如图,已知二次函数与轴交于,两点,与轴交于点,过点作直线轴交抛物线于一点,将抛物线沿着直线翻折,并向右平移个单位,得到抛物线,抛物线交直线于,两点在的左边),点,分别是,的顶点,连接,得到四边形(1)当,时,直接写出抛物线的解析式;(2)若点,是线段三等分点,求的值;(3)在平移过程中,是否存在以点,为顶点的四边形是矩形的情形,若存在,求出应满足的关系式,若不存在,请说明理由4在平面直角坐标系中,抛物线为常数)的顶点为(1)当时,求点的坐标,以及抛物线与轴交点的坐标;(2)若点在第一象限,且,求此抛物线所对应的二次函数的表达式,并
3、写出函数值随增大而减小时的取值范围;(3)当时,若函数的最小值为3,求的值;(4)分别过点、作轴的垂线,交抛物线的对称轴于点、当以点、为顶点的四边形总是矩形时,直接写出的取值范围5如图,点,二次函数的图象顶点为,与轴交于点,连接,过点作轴于点,点是线段上的动点(点不与、两点重合)(1)直接写出顶点和点的坐标;(2)若直线将四边形分成周长相差为4的两个四边形,求点的坐标;(3)如图,连接,作矩形,在点的运动过程中,是否存在点落在轴上的同时点也恰好落在二次函数的图象上?若存在,求出此时的长;若不存在,请说明理由6综合与探究已知:如图,二次函数的图象的顶点为,与轴交于,两点,与轴交于点,点为抛物线对
4、称轴上的一个动点(1)求二次函数的解析式;(2)当的周长最小时,点的坐标为;(3)当点在轴上方且时,试判断与的位置关系,并说明理由;(4)若点是轴上的一点,坐标平面内是否存在,使以、为顶点的四边形为矩形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由7如图,已知二次函数图象的顶点坐标为,与坐标轴交于、三点,且点的坐标为(1)求二次函数的解析式;(2)在二次函数图象位于轴上方部分有两个动点、,且点在点的左侧,过、作轴的垂线交轴于点、两点,当四边形为矩形时,求该矩形周长的最大值;(3)在(2)中的矩形周长最大时,连接,已知点是轴上一动点,过点作轴,交直线于点,是否存在这样的点,使直线把
5、分成面积为的两部分?若存在,求出该点的坐标;若不存在,请说明理由8如图,二次函数交轴于,两点,交轴于点,(1)求二次函数的解析式(2)如图1,点为直线上方抛物线上(不与、重合)一动点,过点作轴于,交于,求的最大值及此时点的坐标(3)如图2,将二次函数沿射线平移个单位得到新抛物线,点为新抛物线对称轴上一点,是的顶点,为坐标平面内一点,使得以点、为顶点的四边形是矩形,请直接写出点的坐标,并选择一个你喜欢的点写出求解过程9如图1,二次函数与轴交于点、点(点在点左侧),与轴交于点,(1)求二次函数解析式;(2)如图2,点是直线上方抛物线上一点,轴交于,交轴于点,求的最大值及此时点的坐标;(3)在(2)
6、的条件下,当取最大值时,连接,将绕原点顺时针旋转至;将原抛物线沿射线方向平移个单位长度得到新抛物线,点在新抛物线的对称轴上,点为平面内任意一点,当以点,为顶点的四边形是矩形时,请直接写出点的坐标10已知,二次函数图象与轴交于两点,与轴交于点,连接、(1)如图1,请判断的形状,并说明理由;(2)如图2,为线段上一点,作交抛物线于点,过作轴,垂足为,交于点,过作,交于,求周长的最大值和点坐标;(3)如图3,将抛物线向右平移个单位,再向上平移3个单位得到新的抛物线,是否在新抛物线对称轴上存在点,在坐标平面内存在点,使得以、为顶点的四边形是以为边的矩形?若存在,请直接写出点坐标;若不存在,请说明理由1
7、1如图所示,将二次函数的图象沿轴翻折,然后向右平移1个单位,再向上平移5个单位,得到二次函数的图象函数的图象的顶点为点函数的图象的顶点为点,两函数图象分别交于、两点(1)求函数的解析式;(2)如图2,连接、,判断四边形的形状,并说明理由(3)如图3,连接,点是轴上的动点,在平面内是否存在一点,使以、为顶点的四边形为矩形?若存在,请求出点的坐标;若不存在,请说明理由答案1【解答】解:(1)把代入二次函数得:,;(2)由(1)可知,二次函数的解析式为:;当时,当时,或3,;(3),当时,或2,只有符合题意综上所述,点的坐标为;(4)存在,理由:当是矩形的边时,此时,对应的矩形为,故,矩形为正方形,
展开阅读全文