六年级下册数学教案-6.2.2 立体图形的表面积和体积的复习|冀教版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《六年级下册数学教案-6.2.2 立体图形的表面积和体积的复习|冀教版.docx》由用户(后花园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级下册数学教案-6.2.2 立体图形的表面积和体积的复习冀教版 六年级 下册 数学教案 6.2 立体 图形 表面积 体积 复习 冀教版 下载 _六年级下册_冀教版(2024)_数学_小学
- 资源描述:
-
1、立体图形的表面积和体积的复习教学目标:1、通过整理、复习,使学生进一步理解立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,使所学知识进一步条理化和系统化。2、进一步培养学生的空间观念,体会转化、类比等教学思想。 3、利用体积和表面积公式解决生活中实际问题,感受数学与生活的密切联系。 教学重点:系统整理立体图形表面积和体积的推导过程,体会数学知识之间的内在练习。教学难点:灵活运用所学知识解决简单的实际问题。教学过程:一、回忆旧知、揭示课题 上节课我们复习了平面图形的特征和面积,今天这节课我们来复习整理立体图形的特征以及表面积和体积。二、整理复习,形成网络1、
2、小组合作,系统整理立体图形的特征以及表面积和体积的计算方法。下面小组合作,请同学们在小组中说一说你是怎样进行整理的?2、汇报展示,交流评价哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。注意计算公式与学生的评价。3、归纳总结,升华提高(1)公式推导。刚才,我们已经对立体图形表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,自己说一说。(2)反馈:谁自愿来说一说自己喜欢图形表面积或者体积公式的推导过程。还有没有不同的?(3)整理知识间的内在联系同学们。我们已经对
3、立体图形的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些立体图形的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。反馈学生交流情况,明确其内在联系:a、立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用侧面积加两个底面积;(长方体侧面展开也是一个长方形)b、立体图形的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底
4、等高的圆柱体的体积是圆锥的3倍。C、为什么长方体、正方体和圆柱体的体积都可以用底面积乘高来计算,而圆锥为什么不可以? 小结:长方体、正方体和圆柱体上下两个面完全相同,而且上下粗细完全一样,而圆锥的特征不一样。三、应用拓展,提高技能师:刚才同学们对立体图形的表面积和体积的有关知识进行了系统的整理,下面请同学们运用这些知识解决几个问题?(一)我当审判长1、一个正方体的棱长扩大2倍,它的体积就会扩大8倍。( )2、长方体比长方形大。( )3、油桶的容积就是油桶的体积( )4、一个正方体和一个圆柱体的底面周长和高都相等,那么它们的体积也相等。( )5、把一个圆柱削成最大的圆锥,圆锥的体积是削去部分的一
展开阅读全文