书签 分享 收藏 举报 版权申诉 / 156
上传文档赚钱

类型普通物理专题研究(电磁学)课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5222800
  • 上传时间:2023-02-17
  • 格式:PPT
  • 页数:156
  • 大小:1.57MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《普通物理专题研究(电磁学)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    普通 物理 专题研究 电磁学 课件
    资源描述:

    1、普通物理专题研究 电磁学部分 一、静电场电势零点的选择 众所周知,根据库仑定律和叠加原理可以证明,静电场力作功与路径无关,静电场是保守力场,可以引入电势概念。场强和电势都是位置的函数,场强是矢量,电势是标量,因此采用电势来描述静电场常常会带来许多方便。在教学中围绕静电场电势零点的选择,往往有不少疑问。例如,为什么电势零点选择具有任意性,是否有所限制?为什么通常选无穷远为电势零点,这样选的好处是什么?是否也有限制?V=0与V地=0是否相容?选取不同电势零点得出的电势是否能够相加,如何相加?等等。1.静电场电势零点选择的任意性静电场电势零点的选择,从原则上说,是任意的。从物理上看,静电场力作功表明

    2、有能量交换,静电场力作功与路径无关表明存在着一种与静电场力有关的,只取决于相对位置的能量电势能,即bapbpababapbpapapbabbaabl dEqEEVVl dEqEEEEWl dEqW000)(:定义电势差电势能差:引入电势能:静电场力作功 为了确定静电场中各点的电势值,即确定单位正电荷在各点所蕴含的电势能,需要选定参考点及其电势值,一经选定,静电场中各点电势值就唯一确定。的选择是任意的。参考点电势,令,参考点babaabbbabaVl dEl dEVVVVl dEV,0 选择不同参考点,静电场中各点电势有所不同选择不同参考点,静电场中各点电势有所不同(只差一个常数),但两点之差不

    3、变但两点之差不变。描述的仍是同一个静电场,这就是静电场中电势零点可任意选择的物理原因。cbccbacbacbcacacababaVl dEVVl dEVl dEl dEVVl dEVcVl dEVb其中式可改成:二者之差别:点参考点选择点参考点选择例如:)3()2()2(:)1(:比较(1)(3)只差一个常数项,令Vb=0,Vc=0,其常数项为 点可任意选的原因。是一个定值,这就是零cbl dE 从数学上看,电势是描述静电场的标量位置函数,静电场中的电势曲线或等势面,描述了电势的空间分布,选取不同的电势零点,只是使电势曲线或等势面所标数值有所改变而已,电势曲线的形状,曲线上各点的斜率并不改变,

    4、等势面的形状、间隔、等势面法线方向的空间变化率(电势梯度)也都并不改变,即场强的空间分布并不改变,描述的仍然是同一个静电场。这些就是静电场电势零点从原则上说可以任意选定的数学原因。但是,电势零点的选择似乎也有一些限制电势零点的选择似乎也有一些限制。例如,选点电荷所在处为电势零点就有不便之处选点电荷所在处为电势零点就有不便之处。因为,点电荷在空间电场强度为:02041rrqE)011(44000002000rqrdrql dEVVrrrrr)处,所在处处电势为:(选点电荷空间 由此可见,对点电荷的电场,选取点电荷所在处为电对点电荷的电场,选取点电荷所在处为电势零点,空间各点电势均为无穷大,无从区

    5、分和比较,势零点,空间各点电势均为无穷大,无从区分和比较,使电势失去了描述电场的功能使电势失去了描述电场的功能。应该指出,不能因上述结果从原则上否定电势零点选择的任意性。选取点电荷所在处为电势零点不妥的原因是什么?(讨论)点电荷是理想模型,它把有限的电量集中在无穷小的空间范围(一点)之内,必然导致点电荷所在处的电荷密度为无穷大,场强为无穷大,电势为无限增长。任何实际的电荷分布不会出现这种情况。问题在于,当无限接近实际的点电荷时,点电荷的理想模型已经失效。如果坚持点电荷的理想模型,就不能选点电荷所在处为电势零点。实际上,可以选无限远为电势零点,就可以克服上述困难。2.2.为什么选择无穷远点为电势

    6、零点(为什么选择无穷远点为电势零点(V=0)?)?在几乎一切的静电场中,尽管带电体系的电量不同,分布各异,但电量总是有限的,分布范围也总是有限的。一般来讲,带电体系附近的场强比较强,电势变化剧烈,距离带电体系较远处的场比较弱,电势变化和缓。足够远处物理上可称之为无穷远的广大空间场强为零,足够远处物理上可称之为无穷远的广大空间场强为零,电势恒定电势恒定。对于几乎一切的实际静电场问题,都存在具有上述特点的无穷远点,这就是一般的电磁学教材所说的,对于分布在有限区域的带电体,通常取无穷远为电势零点。这里无穷远点并非一个点无穷远点并非一个点,而是距离电荷足够远的广大距离电荷足够远的广大区域,其中任何一点

    7、都是区域,其中任何一点都是。然而在一些理想化的问题中,选取V=0有时会引起矛盾。例如:无限大带电平面、无限长均匀带电直线或圆柱产生的静电场,选择V=0就有问题。无限大带电平面产生的静电场是均匀场。与路径有关?积分,沿积分,沿?点电势:面的平行直线,如图示电场线是垂直于带电平02210VplVll dEVPEppP 得出:各点电势无法区分和比较又都不确定的结论,但在电场中取两点,其电势差是确定的。上述矛盾说明,如果坚持带电面是无限大,就不能选择V=0,因为已经不存在比带电面伸展范围更遥远得多的场强为零,电势恒定被称为无穷远点的广大空间了。解决问题的办法是,选取带电面上某一点为电势零点。反之,如果

    8、选V=0,则不能同时采用无限大带电平面的理想模型。任何实际的带电平面都不会无限大,它所产生的场也不是均匀的场(边缘效应)。同理,对无限长带电线、圆柱体产生的静电场也不能选无限远为电势零点。11110111nnrnkrdrkrdEVVVrVnrErnrnrrrn收敛,当(指场强)发散,当处电势为:,才能选,且满足一般说来,只有当 积分发散。,场,无限长均匀带电直线的,场,无限大均匀带电平面的,212000rVrEnEn积分收敛径向分量点偶极子的电场,点电荷的场,)(4cos2,34,23020rPEnrqEn 3.为什么选择V地=0,它和V=0是否相容?在实际的问题中往往把电器外壳接地,并选取地

    9、球的电势为零,即V地=0,这样选的根据是什么?V地=0与V=0是否相容?为了简单起见,假设地球是一个不带电的导体球,不产生电场。首先,如果空腔导体(不接地)内没有带电体,则不论导体壳是否带电,还是放在外电场中,静电平衡时,导体壳内没有电场,导体壳保护了它所包围的区域不受外表面电荷或外部电荷产生的电场的影响,起到了内屏蔽的作用。其次,为了使带电体不影响外界,可以把它放到接地的空腔导体壳内,由于地球是导体,接地后,使导体壳外表面上感应电荷流入大地,消除了导体壳内带电体对外界的影响,接地导体壳起到了对外屏蔽作用。实际上,接地的空腔导体不仅可以屏蔽电场的内外互相影响,还可以使内外电势互不影响。当然,这

    10、里隐含着一个重要前提,即不论流入地球的电荷是多少,地球的电势始终稳定,可取为零,且V地=0与V=0应该相容。为了论证这一前提,考虑如图所示情景:设A是带电体,B是不带电的接地导体。B与地球联成一个大导体,B和它附近地面称近端,地球另一侧称为远端。B靠近A端有感应电荷,同时地球远端有等量异号电荷。由于地球的线度和曲率半径远比A、B大,地球远端相对A、B而言可以看做是极大平面,其感应电荷面密度与 A、B相比是极小的,所以地球远端电场强度(E=/0)远小于A、B表面外附近场强。从地球远端表面外一直伸展到无穷远的电场分布与A、B表面外伸展到无穷远的电场强度相比是极小的。因此尽管地球与无穷远之间有电势差

    11、,但这个电势差与A、B之间电势差相比是极小的。所以,在研究A、B附近电场电势分布时,忽略 V地与V的差别,近似地取V地=0是合理的。如果带电体A电量增大,则B感应电荷增多,流入地球远端等量异号电荷相应地增多,地球电势(与V=0相比)增大,但同时A、B附近电场电势也增大。上述分析仍适用。如果B是空腔导体,其中有带电体C,同时带电体A仍在B附近,达到静电平衡,B内表面有感应电荷,进入地球的感应电荷有所变化,含C感应在外表面的电荷,但不影响上述讨论的结果。总之,当接地导体内、外都有带电体,在讨论接地导体与带电体附近静电场的电势分布时,可以忽略地球与无穷远之间的电势差,认为地球电势分布十分稳定,这正是

    12、电器接地的目的,也是取V地V=0的根据。当然,如果研究地球带电多少?受到静电感应或不受静电感应的电势,或研究与地球大小相比同数量级的空间范围内的电势分布,则破坏了上述条件,V(=0)V地。实际上,地球物理研究表明,地球电荷为负,地球上空电离层带正电,可以把地球和电离层看成是一个球形电容器,电场分布基本上是法向,垂直球表面。实际测定,在晴朗的天气里,在平坦的旷野上,从地面向上每米增加电势约为100V(120?),即地球表面附近大气中存在着竖直向下约为100V/m(120?)的电场强度,且场强随高度增加逐渐减弱(因大气电导率不均匀)。思考:由地球表面大气场强估算地球相对无穷远的电势 V是多少?()

    13、2004,4RQERQV 4.零点不同的电势如何叠加?如果同时存在几个静电场,且各个静电场对电势零点的选取有不同的限制,则合电场的电势应如何表达?电势零点应如何选择?表达式中常数项的含义是什么?这些都是在教学中令人困惑和容易误解的问题。下面以两个具体问题为例来说明。(1)如图所示,在均匀电场E0中放入一个点电荷q,空间的电场是E0和点电荷和点电荷q产生的电场之和。产生的电场之和。试问合场强的电势应如何表达?试问合场强的电势应如何表达?将坐标原点O取在q所在处,均匀电场的电势用V1表示,因均匀电场不能取无穷远为电势零点,可以选O点为电势零点,于是任一点P的电势为点电荷q产生电场的电势用V2表示,

    14、可选无穷远为电势零点,于是P点电势为合电场的电势为 V=V1+V2+V0,V0是待定常数。式中V1是取O点为电势零点,V2是取无穷远为电势零点,两个零点不同的电势可否这样相加?含义如何?coscos000001rEdrEl dEVprrqdrrqVr020244 对任何静电场,不论电势零点如何选择,电势表达式中对任何静电场,不论电势零点如何选择,电势表达式中变数项形式总是一致,选取不同的电势零点将给出不同变数项形式总是一致,选取不同的电势零点将给出不同的电势值,但其间只差一常数,即只会影响电势表达式的电势值,但其间只差一常数,即只会影响电势表达式中的常数项。如:中的常数项。如:cbccacbc

    15、cbaccbbacbcccacababbaVl dEVVcbVl dEVVl dEl dEVl dEl dEVcVl dEVVbVl dEV时),(当表达式中只差常数项:点为电势零点,点为零点与选选)(常数(电势差一定)点为电势零点,选,点为电势零点,选00,00 前例中,点电荷的电势随空间变化规律为均匀电场的电势随空间变化规律为合电场的电势随空间变化规律必定是两者之和 因此将两式相加是合理的,含义也是清楚的。现在需要确定叠加后合电场的电势零点如何选取现在需要确定叠加后合电场的电势零点如何选取,即说明 V0的取值和含义。显然,对于合电势既不能选取r=0处也不能选取r=处为电势零点,否则场中任意

    16、点的电势都将为无穷大。除了上述限制,合电场中任意点都可选为电势零点。电势零点一旦选定,V0的取值和含义就都确定了。如:选r=r0,=0的A点为电势零点,则:rq04cos0rEcos400rErq rqrEVVEqrEqrrqrEVrqrEV00000000000000000004cos,444004为零。合电场电势为即取若想使00220011000021002144)(,0rqVAVrEVAOVrqrEVVVVVVVVAAAAAAAAAA点电势势零点,在是点电荷选无穷远为电点电势点为零点,在在处是均匀电场在点电荷所即(2)如图所示,在均匀电场 E0中放入半径为R0带电量为Q 的导体球。取球心

    17、为坐标原点,若无均匀电场E0,只有带电导体球,则电荷均匀分布在球表面上,加均匀电场E0后,在E0作用下导体表面将出现感应电荷,达到静电平衡后,感应电荷在球外的电场等效于一个中心在球心的电偶极子的电场。感应电荷在球内的电场应与E0等值反向,以使导体内部的合场为零。因此合电场由三部分组成(E0、Q 的场,感应电荷的场)其电势是相应的三个电势叠加(在P点电势):为电势零点。的电势,选取原点均匀电场OEV01:cos01rEV点。势,选无穷远为电势零:均匀带电导体球的电2V)()(000002,4,4RrRQRrrQV 0200200000200002003200000334242420,04cos2

    18、,cos2,)(444ERqRqEEEERqEOqEEEEqrqRVrrrRrrRrrrrrqrqrqVV,即反向,有方向与(电偶极子在中点)点电场在感应电荷表示:导体内电场用将当的电场中电势。在球外相当于电偶极子的电势,:感应电荷产生的电场)()(合电场的电势)()(故内外0000002300000321000230030323003,4,cos4cos,cos,coscos,cosRrVRQRrVrRErQrEVVVVVVRrrERrrREVrEVrREV 下面选取合电场的电势零点,并确定V0的取值和含义。取r=r0R0,=0的A点为电势零点,即VA=0由上页式子得:使V0=0,解上式r0

    19、的三次代数方程,求V0=0的位置。20300000004rRErQrEV同。表达式对球内、外都相说明前式意义明确,形式简单,时,当特例:000000,4VRQVRr 总之,如果同时存在几个静电场,且各个静电场选取了不同的电势零点(其原因往往是因为同时采用各种理想模型,使各场电势零点的选取存在不同的限制),则合电场的电势表达式中的变数项仍为各电场电势表达式中的变数项之和。令合电场电势表达式中的待定常数项V0为零,由V0=0即可确定合电场电势零点的位置。当然,也可选取其他不受限制的位置作为合电场的电势零点。例题1半径为R1的导体球带有电荷q,球外有一个内、外半径分别为R2、R3的同心导体球壳,球壳

    20、上带有电荷Q。求:(1)两球的电势V1和V2;(2)两球的电势差;(3)用导线把球和壳连接在一起后,V1、V2、V是多少?(4)在情形(1)(2)中,若外球接地,V1、V2、V各是多少?(5)设外球离地面很远,若内球接地,情况如何?3020323210132112120332322012144)(41:)1(4,0,4,)3)(2)(1(333323211RQqdrrQqdrEl dEVRQqRqRqVdrEdrEdrEl dEVVVrqQERrERrRrqERrRRRRRRRRRR,外球电势内球电势。问取无穷远为电势零点解:)11(40)2()1()4(044)3()11(4)2(21012

    21、30203212101213321RRqVVVVRqQrdrqQdrEVVqQRRqdrEVVVRRRR中,若外壳接地,和在,内球与壳等电势全部分布在球壳外表面电荷一起,用导线把内球和壳连在两球的电势差:(5)接地电势与无穷远电势为零并存,且二者等价。当内球接地,电荷并不为零。接地后其上电荷入地,壳内表面电荷消失,外壳带电Q 要在内、外表面重新分布,且在内球与大地组成的导体中产生感应电荷,其中有一部分分布在内球上,由于壳上总电荷为Q,内球感应的电荷必为负,设为-Q,壳内表面为+Q,壳外表面带电Q-Q,电场分布内外皆为球对称。三层同心球面在内球产生的电势为(在球心上)(4)()(4)(43132

    22、21021221313221012302RRRRRRRRQVVVVRRRRRRRRQRQQV31322121130201010444RRRRRRQRRQVRQQRQRQV则内球接地:(5)方法:由于接地电势与无穷远电势为零并存,二者等价。设内球Q,外球内表面-Q,外表面Q+Q 3132212130120312023201214)11(44,4:123RRRRRRQRRQRQQRRQdrEdrErQQERrrQERrRRRR(外球电势),二、平行板导体组电荷分布问题二、平行板导体组电荷分布问题 平行板导体组上电荷分布问题是静电场中导体的常见问题,也属于疑难问题,导体版上面电荷分布取决于各板上带的

    23、电量及导体板是否接地。解决此问题一般方法如下:利用静电场平衡条件及电荷守恒定律,由高斯定理及场利用静电场平衡条件及电荷守恒定律,由高斯定理及场叠加原理。叠加原理。(1)在导体内取点,求各表面产生的场(应用高斯定理求场)的叠加,列方程(每个导体板列一个方程)。(2)求各导体总电荷与面密度关系(1+2)S=q(3)若一板接地,该板电荷方程不能用(q=0?),但接地侧=0(补充所少的电荷方程)(4)若研究三块板,外侧两板用导线连在一起,可以列电势差为零方程及两导体总电荷方程。(5)利用静电感应,两板之间内侧总是带等量异号电荷。例题1 两块平行板,分别带电荷qA、qB,求各板面的电荷面密度。正负及大小

    24、。、决于各板表面带电荷正负取解方程得:),(),(列两板电荷方程:),(),(点列方程、在两板中分别取BABABABAqqSqqSqqSqSqpp224)(3)()2(202222102222:)1(32414321040302010403020121。,电荷分布在两板外侧即两板带等量同号电荷,得;,电荷分布在两板内侧即两板带等量异号电荷,得特例:SqqqSqqqABAABA41323241,0)2(,0)1(例题2 在上例两板间插入一块中性金属板C(三板长、宽相同),求各板面密度。SqqSqqqSSqSBABABA2,26)(50)(4)()2(30222222202222221022222

    25、2)1(543261654321060504030201060504030201060504030201解方程得:),(),(),(列每个板电荷方程:),(),(),(:在每个板中取点列方程结论:中性板插入不改变原来两板电荷分布,而中性板两侧出现等量异号电荷。(与板间距是否有关?)例题3 当一个导体板接地,电荷如何分布?),(),(),(接地由于、两个导体板分别带电30222202221)(0,0:)1(030201030201214SqqBqqABBA讨论 此结论与两个导体板带电量是否等量,是否同号有无关系?(无关)结论 当当B板接地,板接地,qB=0,电荷分布与,电荷分布与qA有关,有关,

    26、qA分布分布在内侧,且感应在内侧,且感应B板内侧板内侧。SqA32321)1()3()2(0)3()2(得:由得:由得:由(2)若三块平板,A板带电qA,B板带电qB,C不带电。),(),(),(),(),(,板接地:若50)(4022222302222220222221)(0043050403020105040302010504030201216SSqqBAB 右侧等量异号电荷。板内侧感应与板感应等量异号电荷,板电荷分布在内侧,得由得:由得:由得:由得:由CBCASqSqAA0,)1()3()4()5()4()3(0)4()2(61543225443321讨论:为什么B板接地,A板外侧无电荷

    27、?因电场线指向电势降低处,B板的电势VB=0,AB,VA-VB=VA,而VA-VVA,V0,因为对无限大平板,无限远电势不等于零。只有A板外侧Q=0,外侧无电场,才能V=0 例题4 三块平行导体板,若外两侧接地。设B板带电荷q,A、C不带电,求电荷分布。2212352114412320410354324305040302050403020504030261)4(:)2()1(:)3()2(4)(3022222022221022220SqdddSqdddddddVVqSCABCBA,得:代入,所以有因为由由),(),(),(),(有:接地:、解:由于 练习题三个平行板A、B、C组成一平行板导体组

    28、,如图所示。已知qA=10c,qB=-4c,qC=0,平行板的面积均为S=1m2.求:六个面上的电荷面密度;用导线连接C、B两板,待达到静电平衡后又撤去连线,再求六个面上的电荷面密度;在的基础上再用导线连接A、B两板,再求六个面上的电荷面密度,忽略边缘效应。变。和,其它面电荷分布不连接后,其内侧电荷中、又根据式得:由式,得代入又得:由)得,所以由(又而)(,电荷为一个导体,其上共有、连接后,、)(,)(解:由前面结果知:BCdVmcmcmcmcmcmcqSmccScqqBCBCmcSqqmcSqqCBABCBABA0,000:/7)3(/7)1(,/3,/6)3()2()3(/4:1)2(/1

    29、0)(1/44)(42/72/32145404222326161261262322212126354654325432261(3)静电平衡后,撤掉C、B连线,电荷分布不变,再将A、B用导线连接有下列方程:261161252265216521252243234343525432420402/367132,/5.3/13/)()(/5.3/5.3/727)(,00mcmcmcSqqSqqmcmcmccSddVVVBABACBACAB又)(用导线连成一个导体由由 三、电场线的应用三、电场线的应用 研究静电场中的导体问题,根据静电平衡条件,再加上电场线的概念,避免了可能出现的复杂数学问题,并且可以获得

    30、令人满意的定性分析结果。下面应用电场线性质及作图规定定性解释静下面应用电场线性质及作图规定定性解释静电感应现象。电感应现象。1 1、感生电荷的绝对值、感生电荷的绝对值 与施感电荷的绝对值与施感电荷的绝对值 具有具有证明(分析)(1 1)封闭导体壳内空间有点电荷)封闭导体壳内空间有点电荷q q存在时存在时导体壳内外感应电荷分别为-q,+q导体达到静电平衡时,壳内E=0,因为q为正,发出的电场线不能穿过壳层终止于无穷远,只能终止于内表面的感生电荷-q,电场线在无电荷处不中断,则q大小必然与q等量(据电荷守恒),即qqqq qqq (2 2)电量为)电量为q的带电体的带电体A A附近,有一中性导体附

    31、近,有一中性导体B B,感生电,感生电荷为荷为-q和和+q,则则由于B是等势体,q发出的电场线不可能终止于另一侧的-q,(否则B不是等势体),只能终止于无穷远,所以VBV。另外,不能有电场线由无穷远发出终止于-q,否则VBVBV=0可见,A的电荷q发出的电场线一部分终止于B,一部分终止于无穷远,所以有据高斯定理,电场线条数与电荷电量成正比,+q发出的电场线多于 q接收的电场线,q q。因VAV,A上的电场线必有一部分。qqq-qqq-2.一导体带电,附近有一中性导体,静电感应时,两导一导体带电,附近有一中性导体,静电感应时,两导体不能同时感应异号电荷体不能同时感应异号电荷。如图所示:A导体带正

    32、电+q,B为中性导体,在A附近处感应-q,远端处感应q(qVA,而与VAVBV(已讨论过)产生矛盾,可见此电场线不存在。(2)由无穷远发出电场线终止于-q上,有VVA,与VAV矛盾,此电场线也不存在,所以,只有一种可能,A只有正电荷。3.3.一导体一导体B B,附近有体积很小带正电荷,附近有体积很小带正电荷q的电荷的电荷A A,B B的感的感应电荷应电荷-q和和+q。若。若B B接地,则接地,则+q必消失。必消失。证明:有前面讨论可知,自A+q发出的电场线一部分终止于B上感应的-q,-q的存在应满足电场线性质和VAVB=0.若B上仍存在+q,它的电场线假设有下列几种可能:(1)终止于-q,则B

    33、不是等势体,所以不可能;(2)终止于无穷远,则有VBV=0,与VB=0(接地)矛盾。(3)终止于地,则VBV地,与VB=V地矛盾。唯一合理的结论是,+q消失,即感应电荷中与施感电荷同号者由于接地而消失。利用电场线的概念讨论与电容器有关的一些问题利用电场线的概念讨论与电容器有关的一些问题。4.电容器极板间的电势差是否受外电场影响?严格地说,有的要受影响,有的不受影响。(1)(1)球形电容器的极板之间的电势差不受外电场球形电容器的极板之间的电势差不受外电场影响。影响。设一个未充电的球形电容器,在外电场E的作用下,球形电容器外表面将有感生电荷 分布。能否在内球和外球内壳上出现如图所示的 呢?BqBA

    34、qq ,由静电平衡原理可知,B、A两极板间的电场并不存在(未充电),这可由电场线证明:若B内表面有+qB,其发出的电场线不能穿过B壳,也不能终止于B内表面上的-qB,(因B是等势体),只能终止于A的-qA,有VBVA;同理A上+qA发出的电场线只能终止于B内表面的-qB上,有VAVB,出现了VBVA和VAVB的矛盾,故球形电容器的两极板间的电势差不受外电场的影响。(这也可用来说明为什么导体壳可以屏蔽外电场)此结论对充电电容器(球形)也适用。充电以后的球形电容器,若A极板带正电荷,B极板内表面必带等量负电荷,这两种电荷一定,A、B间的电场分布也一定,如图所示。在任意外电场E的作用下,不会在A、B

    35、间出现附加的电场线,不会改变A、B间的电场线分布,即不会改变A、B间的电势差。(外部电荷分布变化)(2)(2)平行板电容器极板间的电势差,要受外电场影响平行板电容器极板间的电势差,要受外电场影响。有的教材从静电屏蔽出发,认为:一对平面导体 A、B的面积很大,而且靠的很近,电荷将集中在两导体相对的表面上,电场线集中在两表面之间狭小的空间内,外电场对两者之间的电势差VA-VB的影响可忽略不计。这种说法是欠妥的这种说法是欠妥的。平行板电容器在外电场作用下,无论一极板接地或不接地,一般来说,两极板电场分布都要发生变化,从而电势差要改变,但由于极板内表面上电荷成比例改变,电容不变。下面就平行板电容器接地

    36、和不接地两种情况来讨论。a)a)不接地不接地。把一块原来不带电的金属板 B,移近另一块带电q的金属平面板 A,这样便组成一个平行板电容器。设每个面电荷面密度为1、2、3、4,由高斯定理及叠加原理、静电平衡条件可得:由高斯定理知,每个面产生电场 E=/20由场叠加原理与静电平衡条件知,1-2-3-4=0,1+2+3-4=0由电荷守恒知,(1+2)S=q,(3+4)S=0因此可得到:1=2=-3=4=q/2S电场线分布如图所示,两平行板把空间分成三个区域,每个区域的场强E=1/20+2/20-3/20+4/20=21/20=q/20SE=1/20+2/20+3/20-4/20=21/20=q/20

    37、SE=1/20+2/20-3/20+4/20=21/20=q/20S两极板间的电势差为:VAB=Ed=qd/20S各区域电场线是平行等距直线,它表示为均匀场,这里E=q/20S不能选无限远处电势为零。b)b)一板接地一板接地。令上图中B板接地,由前面讨论可知1=4=0,2=-3=q/S,且分布在内侧。两极板间电势差为VAB=Ed=dq/0S电势差比不接地时增大一倍,但极板上电量也增大一倍,故电容不变C=0S/d现在讨论平行板电容器在外电场作用下,考虑电容器接地情况现在讨论平行板电容器在外电场作用下,考虑电容器接地情况。上电荷为零。面上电荷为面上的电荷应为面,上出现感生电荷在面垂直作用于极板表面

    38、,场为简化起见,设均匀电4),(3),(21qqqqqE不变。但电容的,差是会受到外电场影响板电容器两极板间电势与上面结果比较,平行板电势差为、dSVqqCSdqqEdVBAABAB00)(说明:由上图可以看出,在这种均匀电场条件下,不能同时选接地电势和选无限远处电势为零。出现矛盾。若选的电势为零,则,若选的电势的电势又高于,的电场线又终止于而的电势低于线来自无限远,由电场线分布看,,00,VVVVBVBABAVAEBAB 5.一个球形电容器,一次把它的外球与地连接,另一次把内球与地连接,在两种情况下,电容器的电容是否相同?一般认为电容器(真空中)的电容只取决于电容器的几何因素,如球形电容器的

    39、只要内、外球半径RA、RB一定,C就一定。在问题中,RA、RB均未变化,好像C不应变化,但答案是否定的。ABBARRRRC04 下面应用电场线来分析。(1 1)外球壳接地)外球壳接地。如图(a)所示,若内球带正电,外球壳接地,电场线只能分布在内球与外球壳内表面之间,充电电压为电源电压。讨论:外球壳接地前后,电容是否变化?(不变)(2)(2)内球接地内球接地。如图(b)所示,球壳外表面与电源正极相接而带正电,它们的电场线大部分终止于地,少数终止于无限远。对于球形电容器,接地和无穷远可以同时选为零电势。由于内球与电源负极相接,内球表面上带负电,球壳内表面带正电,球壳外表面感应的负电荷被电源提供的正

    40、电荷相抵消。结果,球壳内表面与内球之间有电场线分布。由上图(b)可以看出,相当于球壳外表面与地(和无穷远)形成的电容器和球壳内表面与内球形成的电容器并并联联于电源的两端。并联后的总电容大于其中一个电容器的电容。所以,球形电容器接地时的电容,外球接地和内球接地是不一样的,内球接地时电容比外球接地时电容要大。由此可见。导体系统中的导体如何接地对系统的物理性质是有影响的。练习1:两个完全相同的导体球,皆带等量的正电荷Q,现使两球互相接近到一定程度,则()(A)二球表面都将有正负两种电荷分布;(B)二球中至少有一个表面上有正负两种电荷分布;(C)无论接近到什么程度二球表面都不能有负电荷;(D)无法确定

    41、。(C)反证法:反证法:设都带异号电荷,A上正电荷电场线终止于B上,VAVBV若A上有负电荷,B上电场线终止于A上,VBVA矛盾,所以A上无负电荷。由于两导体一样,同法证明B上也无负电荷。另一种可能,无限远电场线终止于A的负电荷,VAVA与VAVB矛盾;无限远正电荷,VVA与VAVBV矛盾。练习练习2 2:带正电荷导体:带正电荷导体A A附近有一个中性导体附近有一个中性导体B B,当当A A离离B B越近,越近,A A的电势越高还是越低?的电势越高还是越低?四、真空中静电场作用于导体上的力四、真空中静电场作用于导体上的力 把静电能理解为电荷的相互作用能(电势能),用电荷(或电荷密度)和电势来计

    42、算。这意味着静电能的携带者是电荷。而静电能又可以用电场强度来表示,这又意味着静电能是定域于电场中的。在静电场中,两种观点等价,后者的表达式可以根据前者的表达式经过一些数学变换得到,二者只是数学形式上的差异而已。因此,在不同场合,我们可以根据需要,采用不同观点讨论与静电场有关的各种问题。1 1、从静电能的变化求力、从静电能的变化求力讨论在真空中的平行板电容器极板所受的静电力讨论在真空中的平行板电容器极板所受的静电力。设一平行板电容器极板上电荷分别为+Q,-Q,两极板之间相互作用力为吸引力。应用虚功原理应用虚功原理。如图所示,A、B两极板相距x,当A极板离开B极板发生虚位移x,外力克服静电力Fx所

    43、作的功为-Fxx。根据能量守恒,此机械功转化为电容器储存的静电能W。)(2121,21200000202用电场表示的能量所以平行板电容器中:xSEWSQExSQWxSCCQW 忽略边缘效应,于是:(静电力作负功等于电势能增加,静电力作正功等于电势能减少)受的电场力)(平行板电容器一极板,或:表示)(用电荷密度用标量表示:电场力)(电容器单位面积受的写成矢量式:SQFSFESFiESFxSExFx0202202020202221212121 场都成立。电场力,也对任意静电受到的表示导体表面单位面积此外上述表达式体都成立。对孤立导体和非孤立导的关系式:与其表面附近的场强,荷密度带电导体表面上的面电

    44、也成立。、在任意的静电场中0202021212SFnEESF 例:两个无限大均匀带电的平行平面,面电荷密度分别为1和2,在两板之间导体A的ds处,电荷密度为,则ds面所受电场力有下列两个关系式,请选择其中正确的一个:dsfdsf2021021)2()(21)1(;相联系。不再直接与和的影响,所以和包含了本身已经的条件,足表面的电荷分布必然满状态,),导体处于静电平衡解:根据前式,应选(内fE212102的结果一致。与从静电能的变化得到即另一极板电荷的电力,应为一极板电荷的场对的相互作用力,平行板电容器的两极板,错误在什么地方?此结果比实际大了一倍为极板面积。求得,乘以板上电荷附近的电场有的学生

    45、把负极板表面,两极板的相互作用力时在计算平行板电容器的,2,22,)(10200020SQQEFSQESSqFqSqE 习题:在半径为R的均匀带电球面上,任取面积元S,则此面积元上电荷所受的电场力为多少?dsEdsFEEEEdsdsEdsEdsEFEdsds020002102012221:21处产生的场之外,其余部分在导体除。在其附近场为,因导体表面附近一致。,得到结果与前面结论,处场用叠加法求带电球面)处受到电场力(或均匀同理导体表面 五、电介质中的力与有介质时的库仑定律五、电介质中的力与有介质时的库仑定律 真空中的库仑定律反映了点电荷相互作用力的基本规律,是研究静电场的基础。但有介质存在时

    46、,用库仑定律表示介质中的点电荷的相互作用力是有条件的(即在均匀无限充满场不为零的介质中才成立),而且作用在介质中电荷上的力,除了电场力之外还有其他的力,只有在这些其他力可以忽略的情况下,才能用有介质时的库仑定律表示点电荷的相互作用力。20214rqqFr 1 1、电介质中的力、电介质中的力 在静电场中的导体,电场线垂直于表面,导体上电荷所受的力,也垂直于表面。如图所示,平行板电容器内有1、2两种电介质,若考虑边缘效应,电场线(或电位移线)可以不垂直与表面,因此,作用于介质表面极化电荷的力,除有垂直于表面的力,还有平行于介质表面的切向力。为简单起见,我们只考虑场强垂直于电介质表面的情形。如上图所

    47、示,若12,则介质界面上的力垂直向下。(1)定性分析。为清楚一些,将电容器与介质之间的空隙夸大,如图所示:介质。质指向介电常数小的电即从介电常数大的电介向下,电荷受到的电场力,有净正极化电荷,该面处,因由图可知,在两介质界介质界面净极化电荷,即所以,故,即因法向由FPPPPPPEEEPnnrrnnrrr2121212121212121000000)21()11()1((2 2)定量计算)定量计算设1和2两层介质厚度分别为y1和y2,两极板之间距离为y1+y2。假想两介质的分界面向下作一极小虚位移y,则厚度y1增加y,厚度y2减少y,这时电场力所作的功为Fy,根据能量守恒定律,此功应等于静电能的

    48、减小,即Fy=-W (1)由于虚位移而引起的能量变化为小。大指向由,当又由,得:由FEEDsEEFEEDsEEFysEEsyyysEsyyysEW12211222112112222222112222211211)(21)(21)2)(1()2(,)(21)(21)(21(3)推论 从上述结论中可推得,在均匀介质中,把物体放在介电常数与其不同的电介质中,当物体的介电常数大于电介质的介电常数时,它的表面将有指向周围电介质的力,即物体受到张力作用;反之,当物体介电常数小于周围电介质的介电常数时,它的表面将受到指向表面的力,即物体受到压力作用。(在均匀场中,物体受力静止,合力为0)在不均匀的电场中,物

    49、体的介电常数大于周围介质的介电常数,物体受力是否静止,向什么方向运动?物体表面有指向周围电介质的力,但由于处在非均匀场中,各方向ds受力大小不同,场强大处受力大,所以合力指向场强较强区域,物体向电场强的区域运动。反之,物体的介电常数小于周围电介质的介电常数,它将被推向电场强度较弱的区域。(4)处在均匀无限充满电介质中的带电导体表面受到的力恒定律计算。利用虚功原理和能量守此力是多少?限的电介质中,若带电导体处于均匀无力)为单位面积所受的力(张带电导体表面)中讨论可知,真空中由(02022sF rrrrEsFEEEDDEsFsDEFxsDExFxFxsDExswWxsEDxsxs020200002

    50、121,21212121,0,均匀电介质则所以有张力作功为,内的电能此能量为减少,所作的功等于电场能的(张力)作用于导体表面静电力导体内。,介质体积减少同一量则导体体积增加,受电力作用向外扩张面元设带电导体表面某一小 r/1为真空中所受张力的单位面积所受的力电介质中带电导体表面力比较可知:与真空中导体表面受张 2.介质中的库仑定律根据前面的讨论可知,物体(电介质)处在介质常数不同的电介质中,受力将发生整体运动,除此之外,由于物体表面受到力,其形状和大小也将产生微笑的改变,这种现象称为电致伸缩。由此可见,电介质中力的问题是比较复杂的。电介质中的带电体除受到介质平均场强E的作用外,还受到由于介质表

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:普通物理专题研究(电磁学)课件.ppt
    链接地址:https://www.163wenku.com/p-5222800.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库