冀教版八年级数学下册第20章函数课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《冀教版八年级数学下册第20章函数课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冀教版 八年 级数 下册 20 函数 课件 下载 _八年级下册_冀教版(2024)_数学_初中
- 资源描述:
-
1、20.1 常量和变量第二十章 函数导入新课讲授新课当堂练习课堂小结八年级数学下(JJ)教学课件情境引入学习目标1.了解变量与常量的意义.(重点)2.在实际问题中,会区分常量与变量,能够建立变量之间的关系式.(难点)人间四月芳菲尽,人间四月芳菲尽,山寺桃花始盛开。山寺桃花始盛开。白居易白居易高处不胜寒高处不胜寒苏轼苏轼早穿皮袄午穿纱,围着火炉吃西瓜,说明_随_的变化而变化.高处不胜寒,说明 _随_的变化而变化.天气温度时间高山气温海拔高度 万物皆变,大到天体、小到分子都处在不停的运动变化之中,如何从数学的角度来刻画这些运动变化并寻找规律呢?讲授新课讲授新课常量与变量一 汽车以60千米/时的速度匀
2、速行驶,行驶里程为 s 千米,行驶时间为 t 小时,填下面的表:请说明你的道理:60120180 240300问题一速度时间路程=_1在以上这个过程中,变化的量是_不变化的量是_2试用含t的式子表示ss=_时间t、速度60千米/时60 t st这个问题反映了匀速行驶的汽车所行驶的路程_随行驶时间_的变化过程.路程s问题二 每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?若设一场电影售出票 x 张,票房收入为 y 元,怎样用含 x 的式子表示 y?1.早场票房收入=日场票房收入=晚场票房收入=请说明道理:票房收入=10205=2
3、050(元)10150=1500(元)10310=3100(元)售价售票张数10 x2在以上这个过程中,变化的量是_不变化的量是_3试用含x的式子表示yy=_ 售票张数x、票房收入y 售价10元yx这个问题反映了票房收入_随售票张数_的变化过程S=R2圆面积S与圆的半径R之间的关系式是;其中变化的量是;不变化的量是.S,R如图所示,圆形水波慢慢地扩大,在这一过程中,当圆的半径R 分别为10 cm,20cm,30 cm 时,圆的面积S 分别为多少?怎样用半径r来表示面积S?问题三圆的面积S半径R这个问题反映了 _随_的变化过程数值发生变化的量变量数值保持不变的量常量上述运动变化过程中出现的数量,
4、你认为可以怎样分类?思考归纳S=60ty=10 x在一个变化过程中,可以取不同数值的量为变量.在一个变化过程中,数值始终不变的量为常量.请指出上面各个变化过程中的常量、变量.y=5xS=r2在同一个变化过程中,理解变量与常量的关键词:发生了变化和始终不变.知识要点典例精析例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元千克,买a千橘子的总价为m元,其中常量是 ,变量是 ;(2)周长C与圆的半径r之间的关系式是C2r,其中常量是 ,变量是 ;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式 中,其中常量是 ,变量是 ;5a,m2,C,r注意:是一个
5、确定的数,是常量52Sh52S,h指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/升,加油 x 升,车主加油付油费为 y 元;(2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数为 n;(3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 (4)若直角三角形中的一个锐角的度数为,则另一个锐角(度)与间的关系式是=90.练一练例2 阅读并完成下面一段叙述:某人持续以a米分的速度用t分钟时间跑了s米,其中常量是 ,变量是 .s米的路程不同的人以不同的速度a米分各需跑的时间为t分,其中常量是 ,变量是.3.根据上面的叙述,写出一
6、句关于常量与变量的论:.在不同的条件下,常量与变量是相对的at,ssa,t 区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.方法 怎样用含重物质量m(kg)的式子表示受力后的弹簧长度 L(cm)?例3 弹簧的长度与所挂重物有关如果弹簧原长为10cm,每1kg重物使弹簧伸长0.5cm,试填下表:解:由题意可知m每增加1,L增加0.5,所以L=10+0.5m.10.51111.51212.5确定两个变量之间的关系二 则用含重物质量m(kg)的式子表示受力后的弹簧长度 L(cm)为 .如果弹簧原长为12cm,每1kg重物使弹簧压缩0.5cm,L=12-0.5m练一
7、练当堂练习当堂练习1.若球体体积为V,半径为R,则V=其中变量是 、,常量是 .343RVR43,2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a(元)的关系式是 ,其中变量是 ,常量是 .3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是 ,其中的常量是 ,变量是 .a,n5050naQ=40-5t40,5Q,t4.表格列出了一项实验的统计数据,表示小球从高度x(单位:m)落下时弹跳高度y(单位:m)与下落高的关系,据表可以写出的一个关系式是 y=0.5x5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的
8、关系式.11+21+2+31+2+3+n完成上表,并写出瓶子总数y 与层数x之间的关系式1(1)2yxxx课堂小结课堂小结常量与变量 常量与变量的概念列出变量之间的关系式常量:数值保持不变的量变量:数值发生变化的量导入新课讲授新课当堂练习课堂小结八年级数学下(JJ)教学课件20.2 函数第二十章 函数情境引入学习目标1.了解函数的相关概念,会判断两个变量是否具有函数关系(重点)2.会根据函数表达式求函数值.讲授新课讲授新课函数的相关概念一想一想,如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?情景一下图反映了摩天轮上的一点的高度h(m)与旋转时间t(min)之间的关系.(1)
9、根据左图填表:(2)对于给定的时间t,相应的高度h能确定吗?1137 45373 10 瓶子或罐头盒等圆柱形的物体,常常如下图那样堆放.随着层数的增加,物体的总数是如何变化的?填写下表:1361015对于给定任一层数n,相应的物体总数y确定吗?有几个y值和它对应?层数 n物体总数y唯一一个y值情景二 一定质量的气体在体积不变时,假若温度降低到 -273,则气体的压强为零.因此,物理学把-273作为热力学温度的零度.热力学温度T(K)与摄氏温度t()之间有如下数量关系:T=t+273,T0.(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?(2)给定任一个大于-273 的摄
10、氏温度t值,相应的热力学温度T确定吗?有几个T值和它对应?230K、246K、273K、291K唯一一个T值解:当t=-43时,T=-43+273=230(K)情景三思考:上面的三个问题中,各变量之间有什么共同特点?时间 t、相应的高度 h;层数n、物体总数y;摄氏温度t、热力学温度T.共同特点:都有两个变量,给定其中某一个变量的值,相应地就确定了另一个变量的值.一般地,在某个变化过程中,如果有两个变量x与y,如果给定x的一个值,就能相应地确定y的一个值,那么我们就说y是x的函数,x叫做自变量.知识要点 函数一语,起用于公元1692 年,最早见自德国数学家莱布尼兹的著作.他是德国最重要的自然科
11、学家、数学家、物理学家、历史学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献.知识拓展填表并回答问题:(1)对于x的每一个值,y都有唯一的值与之对应吗?答:.(2)y是x的函数吗?为什么?2和28和818和1832和32不是答:不是,因为y的值不是唯一的.练一练关键词:两个变量,给一个x,得一个y.易错点:顺序不要反.讨论1:y与x 的图象如图所示,问y是x的函数吗?xyo12-2 如图是体检时的心电图,其中横坐标x表示时间,纵坐标y表示心脏某部位的生物电流,它们是两个变量,其中y是x的函数吗?yx是讨论2:下面表
12、给出了近五次我国的人口普查数据,表中反映的两个量之间是否具有函数关系?是讨论3:归纳总结 判断y是x的函数,要抓住三个点:(1)在同一个变化过程中;(2)有两个变量;(3)本质上是一种对应关系,即给定一个x的值,能确定唯一一个y值.典例精析例1 下列关于变量x,y 的关系式:y=2x+3;y=x2+3;y=2|x|;y2-3x=10,其中表示y 是x 的函数关系的是 判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.方法yx 一个x值有两个y 值与它对应做一做下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量.(1)改变正方形的边长
13、x,正方形的面积 S 随之变化;(2)秀水村的耕地面积是106 m2,这个村人均占有耕地面积 y(单位:m2)随这个村人数 n 的变化而变化;(3)P是数轴上的一个动点,它到原点的距离记为 x,它对应的实数为 y,y 随 x 的变化而变化 解:(1)S 是x的函数,其中x是自变量.(2)y 是n的函数,其中n是自变量.(3)y 不是x的函数.例如,到原点的距离为1的点对应实数1或-1,例2 已知函数42.1xyx(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0.把自变量x的值带入关系式中,即可求出函数的值.4 2-2=22+142=01xx,12解:(1)当x=2时
14、,y=;当x=3时,y=;当x=-3时,y=7.(2)令 解得x=即当x=时,y=0.52121.下列说法中,不正确的是()A.函数不是数,而是一种关系 B.多边形的内角和是边数的函数 C.一天中时间是温度的函数 D.一天中温度是时间的函数当堂练习当堂练习2.下列各表达式不是表示y是x的函数的是()A.B.C.D.23xy xy1(0)yx xxy18CC3.设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为 ,这个关系式中,是常量,是变量,是 的函数.60s=60t t和sst4.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min
15、)之间的函数关系式是 .1302Qt5.写出下列各问题的关系式,并判断各个量之间是否具有函数关系.(1)运动员在200米一圈的跑道上训练,他跑一圈所用的时间t(秒)与跑步的速度v(米/秒)的关系式;(2)用10 m 长的绳子围成一个长方形,长方形的长a(m)与宽b(m)之间的关系式.解:(1),t是v的函数,其中,v是自变量;200tv5ab(2),a是b的函数,其中,b是自变量.课堂小结课堂小结函数概念:一般地,在某个变化过程中,如果有两个变量x与y,如果给定x的一个值,就能相应地确定y的一个值,那么我们就说y是x的函数,x叫做自变量.函数值导入新课讲授新课当堂练习课堂小结八年级数学下(JJ
16、)教学课件20.2 函数第二十章 函数情境引入学习目标1.能根据简单的实际问题写出函数表达式,并确定自变量的取值范围(重点、难点)做一做:请用含自变量的式子表示下列问题中的函数关系:(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t(单位:h),行驶的路程为 s(单位:km);(2)多边形的边数为 n,内角和的度数为 y 问题(1)中,t 取-2 有实际意义吗?问题(2)中,n 取2 有意义吗?导入新课导入新课复习引入自变量的取值范围问题:上节课时的三个问题中,要使函数有意义,自变量能取哪些值?自变量t的取值范围:_t0情景一讲授新课讲授新课1361015层数 n物体总数y情景二 罐
17、头盒等圆柱形的物体常常如下图那样堆放.随着层数的增加,物体的总数是如何变化的?自变量n的取值范围:_.n取正整数 一定质量的气体在体积不变时,假若温度降低到-273,则气体的压强为零.因此,物理学把-273作为热力学温度的零度.热力学温度T(K)与摄氏温度t()之间有如下数量关系:T=t+273,T0.情景三自变量t的取值范围:_.t-273根据刚才问题的思考,你认为函数的自变量可以取任意值吗?在实际问题中,函数的自变量取值范围往往是有限制的,在限制的范围内,函数才有实际意义;超出这个范围,函数没有实际意义,我们把这种自变量可以取的数值范围叫函数的自变量取值范围例 汽车的油箱中有汽油50L,如
18、果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子.解:(1)函数关系式为:y=500.1x0.1x表示的意义是什么?典例精析(2)指出自变量x的取值范围;(2)由x0及500.1x 0得0 x 500自变量的取值范围是 0 x 500 确定自变量的取值范围时,不仅要考虑使函数表达式有意义,而且还要注意各变量所代表的实际意义.归纳汽车行驶里程,油箱中的油量均不能为负数!(3)汽车行驶200 km时,油箱中还有多少油?(3)当 x=200时,函数 y 的值为y=500.1200=30.因此,当汽车行驶
19、200 km时,油箱中还有油30L.问题二:x,y 之间存在怎样的数量关系?这种数量关系可以以什么形式给出?例2.一个三角形的周长为y cm,三边长分别为 7cm,3cm和 xcm.(1)求y关于x的函数关系式;(2)取一个你喜欢的数作为x的值,求此时y的值;y=x+10这些函数值都有实际意义吗?分析:问题一:问题中包含了哪些变量?x,y 分别表示什么?根据题设,可得 y=x+7+3例2.一个三角形的周长为y cm,三边长分别为 7cm,3cm和 xcm.(3)求自变量x的取值范围.4x10分析:三角形的三边关系应满足:两边之和大于第三边,两边之差小于第三边.即7-3x7+3.y=x+10 (
展开阅读全文