动态规划-实用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《动态规划-实用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动态 规划 实用 课件
- 资源描述:
-
1、 动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题nT(n/2)T(n/2)T(n/2)T(n/2)T(n)=动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题nT(n/2)T(n/2)T(n/2)T(n/2)T(n)=但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/
2、4)T(n/4)如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。n=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2n/2T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n)找出最优解的性质,并刻划其结构特征。递归地定义最优值。以自底向上的方式计算出最优值。根据计算最优值时得到的信息,构造最优解。(1)单个矩阵是完全加括号的;(2)矩阵连乘积 是完全加括号的,则 可 表示为2个完全加括号的矩阵连乘积 和 的乘积并加括号,即 AABC)(BCADCBA,1050A4010B3
3、040C530D)(DBCA)(DCAB)(DBCA)(CDBA)(CDAB16000,10500,36000,87500,34500u完全加括号的矩阵连乘积可递归地定义为:u设有四个矩阵 ,它们的维数分别是:u总共有五中完全加括号的方式n给定n个矩阵 ,其中 与 是可乘的,。考察这n个矩阵的连乘积 n由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。n若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积,.,21nAAAiA1iA1,.,2,1ninAAA.21
4、给定n个矩阵A1,A2,An,其中Ai与Ai+1是可乘的,i=1,2,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。u穷举法穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。算法复杂度分析:算法复杂度分析:对于n个矩阵的连乘积,设其不同的计算次序为P(n)。由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1.Ak)(Ak+1An)可以得到关于P(n)的递推式如下:)/4()(11)()(1)(2/311nnPnnknPkPnPnnku穷举法穷举法u动态规划动态规划将矩阵连乘积 简记
5、为Ai:j,这里ij jiiAAA.1考察计算Ai:j的最优计算次序。设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,ik=cij-1)节点的值均小于它的根节点的值;因此,最长公共子序列问题具有最优子结构性质。特征:计算Ai:j的最优次序所包含的计算矩阵子链 Ai:k和Ak+1:j的次序也是最优的。矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。记S=N-(1),则有T=T(S,b(1)。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题(1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。特征:计算Ai:j的最
6、优次序所包含的计算矩阵子链 Ai:k和Ak+1:j的次序也是最优的。矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。n设计算Ai:j,1ijn,所需要的最少数乘次数mi,j,则原问题的最优值为m1,n n当i=j时,Ai:j=Ai,因此,mi,i=0,i=1,2,nn当ij时,n可以递归地定义mi,j为:jkipppjkmkimjim1,1,这里 的维数为 iAiipp1jipppjkmkimjijimjki,1,min0,1jki 的位置只有 种可能kij n对于1ijn不同的有序对(i
7、,j)对应于不同的子问题。因此,不同子问题的个数最多只有n由此可见,在递归计算时,许多子问题被重复计算多许多子问题被重复计算多次次。这也是该问题可用动态规划算法求解的又一显著特征。n用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法)(22nnn设 ,则hibi8。从跳跃点集pi的定义可以看出,pi中的跳跃点相应于xi,xn的0/1赋值。mij=t;T(S,t)=ai+T(S-i,bi+maxt-ai,0)=ai+aj+T(S-i,j,tij)
8、设m1是对子链p(i,s)的任意一种合并方式得到的值,而a和b分别是在所有可能的合并中得到的最小值和最大值。从m(i,j)的递归式容易看出,算法需要O(nc)计算时间。因此,函数m(i,j)的全部跳跃点包含于函数m(i+1,j)的跳跃点集pi+1与函数m(i+1,j-wi)+vi的跳跃点集qi+1的并集中。从跳跃点集p5与q5的并集p5q5=(0,0),(4,6),(5,4),(9,10)中看到跳跃点(5,4)受控于跳跃点(4,6)。矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。if(bij=1)public static void matrixChain(int p
9、,int m,int s)int n=p.length-1;for(int i=1;i=n;i+)mii=0;for(int r=2;r=n;r+)for(int i=1;i=n-r+1;i+)int j=i+r-1;mij=mi+1j+pi-1*pi*pj;sij=i;for(int k=i+1;k j;k+)int t=mik+mk+1j+pi-1*pk*pj;if(t 0)return mij;if(i=j)return 0;int u=lookupChain(i+1,j)+pi-1*pi*pj;sij=i;for(int k=i+1;k j;k+)int t=lookupChain(i
10、,k)+lookupChain(k+1,j)+pi-1*pk*pj;if(t u)u=t;sij=k;mij=u;return u;若给定序列X=x1,x2,xm,则另一序列Z=z1,z2,zk,是X的子序列是指存在一个严格递增下标序列i1,i2,ik使得对于所有j=1,2,k有zj=xij。例如,序列Z=B,C,D,B是序列X=A,B,C,B,D,A,B的子序列,相应的递增下标序列为2,3,5,7。给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。给定2个序列X=x1,x2,xm和Y=y1,y2,yn,找出X和Y的最长公共子序列。设序列X=x1,x
11、2,xm和Y=y1,y2,yn的最长公共子序列为Z=z1,z2,zk,则(1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。(2)若xmyn且zkxm,则Z是xm-1和Y的最长公共子序列。(3)若xmyn且zkyn,则Z是X和yn-1的最长公共子序列。由此可见,2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。因此,最长公共子序列问题具有最优子结最优子结构性质构性质。由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系。用cij记录序列和的最长公共子序列的长度。其中,Xi=x1,x2,xi;Yj=y1,y2,yj。当i=0或j=0时,
12、空序列是Xi和Yj的最长公共子序列。故此时Cij=0。其他情况下,由最优子结构性质可建立递归关系如下:jijiyxjiyxjijijicjicjicjic;0,;0,0,01,1max1 110由于在所考虑的子问题空间中,总共有(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。Algorithm lcsLength(x,y,b)1:mx.length-1;2:ny.length-1;3:ci0=0;c0i=0;4:for(int i=1;i=m;i+)5:for(int j=1;j=cij-1)10:cij=ci-1j;11:bij=2;12:else 13:c
13、ij=cij-1;14:bij=3;构造最长公共子序列构造最长公共子序列Algorithm lcs(int i,int j,char x,int b)if(i=0|j=0)return;if(bij=1)lcs(i-1,j-1,x,b);System.out.print(xi);else if(bij=2)lcs(i-1,j,x,b);else lcs(i,j-1,x,b);在算法lcsLength和lcs中,可进一步将数组b省去。事实上,数组元素cij的值仅由ci-1j-1,ci-1j和cij-1这3个数组元素的值所确定。对于给定的数组元素cij,可以不借助于数组b而仅借助于c本身在时间内确
14、定cij的值是由ci-1j-1,ci-1j和cij-1中哪一个值所确定的。如果只需要计算最长公共子序列的长度,则算法的空间需求可大大减少。事实上,在计算cij时,只用到数组c的第i行和第i-1行。因此,用2行的数组空间就可以计算出最长公共子序列的长度。进一步的分析还可将空间需求减至O(min(m,n)。用多边形顶点的逆时针序列表示凸多边形,即P=v0,v1,vn-1表示具有n条边的凸多边形。若vi与vj是多边形上不相邻的2个顶点,则线段vivj称为多边形的一条弦。弦将多边形分割成2个多边形vi,vi+1,vj和vj,vj+1,vi。多边形的三角剖分多边形的三角剖分是将多边形分割成互不相交的三角
15、形的弦的集合T。给定凸多边形P,以及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得即该三角剖分中诸三角形上权之和为最小。一个表达式的完全加括号方式相应于一棵完全二叉树,称为表达式的语法树。例如,完全加括号的矩阵连乘积(A1(A2A3)(A4(A5A6)所相应的语法树如图(a)所示。凸多边形v0,v1,vn-1的三角剖分也可以用语法树表示。例如,图(b)中凸多边形的三角剖分可用图(a)所示的语法树表示。矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。三角剖分中的一条弦vivj,ij,对应于矩阵连乘积Ai+1:j。凸多边形的最优三角剖分问
16、题有最优子结构性质。事实上,若凸(n+1)边形P=v0,v1,vn的最优三角剖分T包含三角形v0vkvn,1kn-1,则T的权为3个部分权的和:三角形v0vkvn的权,子多边形v0,v1,vk和vk,vk+1,vn的权之和。可以断言,由T所确定的这2个子多边形的三角剖分也是最优的。因为若有v0,v1,vk或vk,vk+1,vn的更小权的三角剖分将导致T不是最优三角剖分的矛盾。定义tij,1ijn为凸子多边形vi-1,vi,vj的最优三角剖分所对应的权函数值,即其最优值。为方便起见,设退化的多边形vi-1,vi具有权值0。据此定义,要计算的凸(n+1)边形P的最优权值为t1n。tij的值可以利用
17、最优子结构性质递归地计算。当j-i1时,凸子多边形至少有3个顶点。由最优子结构性质,tij的值应为tik的值加上tk+1j的值,再加上三角形vi-1vkvj的权值,其中ikj-1。由于在计算时还不知道k的确切位置,而k的所有可能位置只有j-i个,因此可以在这j-i个位置中选出使tij值达到最小的位置。由此,tij可递归地定义为:jijivvvwjktkitjitjkijki)(1min01与矩阵连乘问题相比,递归式仅权函数不同其它完全一样,所以算法也类似。算法的输入为凸多边形P=v0,v1,vn和定义在三角形上的权函数Algorithm MinWeightTriangulation(int n
18、,Type*t,int*s)1:tii=0;2:for(int r=2;r=n;r+)5:for(int i=1;i=n-r+1;i+)6:int j=i+r-1;7:tij=ti+1j+w(i-1,i,j);8:sij=i;9:for(int k=i+1;k=i+r-1;k+)10:int u=tik+tk+1j+w(i-1,k,j);11:if(utij)tij=u;sij=k;12:13:14:多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。游戏第1步,将一条边删除。随后n-1
展开阅读全文