人脸识别演讲-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人脸识别演讲-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 识别 演讲 课件
- 资源描述:
-
1、人脸识别/AI 2018.09.07face detection/AI/week report汇报人:芥末酱前 言 人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别。它集成了人工智能、机器学习、模型理论、视频图像处理等多样专业技术。随着智能手机的快速普及,可以通过手机镜头在手机上做基于人脸识别的身份注册、认证、登录等,使身份认证进程更安全、方便。由于人脸比指纹等视觉辨识度更高,所以刷脸的应用前景更广阔。目录/Contents01人脸识别.应用02人脸图像.预处理03人脸图像.
2、特征检测04人脸图像.匹配与识别01人脸识别.初识 人脸识别分为两大类:一是回答我是谁的问题,即辨认(Identification),二是回答这个人是我吗?即(Verification)。正常人眼的识别准确率是97%,而目前专业的人脸识别研究企业机构可让其精确度高达99%以上,若结合眼纹等多因子验证,准确率能达到99.99%。且以人脸识别技术为核心的系统,能解决人脸识别在现实应用场景中面临的众多问题。1应用场景/Application scenario 要支持未来在无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业
3、务的效率。应用场景:支持未来刷脸办理业务 比如人脸实时报警系统。应用人脸检测和识别技术,在人员进出重点区域设置人脸卡口摄像机,针对经过卡口人员进行人脸抓拍、识别和自动报警,并可将报警信息推送到警务终端APP,实现实战预案联动。人脸卡口系统可独立部署,也可作为子系统对接到第三方管理平台,可广泛应用于公安、交通、金融、司法、教育、医院等领域。应用场景:智慧城市中的应用 当前主要是通过扫描或者复印身份证信息,人工比对身份证照片。扫描或复印身份证只是作为备案,并不能有效核实身份证真伪。要确保是采用真实身份证办理业务,必须有某种技术手段对办事人提供的身份证进行查验。应用场景:身份证查验,证据留存02人脸
4、图像.预处理 预处理是人脸识别过程中的一个重要环节。输入图像由于图像采集环境的不同,如光照明暗程度、以及设备性能的优劣等,往往存有噪声,对比度不够等缺点。因此我们需要对其进行图像预处理。2图像预处理/Image preprocessing 通过平移、转置、镜像、旋转、缩放等几何变换对采集的图像进行处理,用于改正图像采集系统的系统误差。几何变换 将彩色图像转换为灰度图,其中有三种方法:最大值法、平均值法、以及加权平均法。灰度化 图像增强是为了改善人脸图像的质量,在视觉上更加清晰图像,使图像更利于识别。图像增强 归一化工作的目标是取得尺寸一致,灰度取值范围相同的标准化人脸图像。归一化2灰度化/Gr
5、ayscale最大值法平均值法 加权平均将图像中的三分量亮度的最大值作为灰度值。将图像中的三分量亮度求平均得到一个灰度值。将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对RGB三分量进行加权平均。在RGB模型中,当R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值(又称强度值、亮度值),灰度范围为0-255。简要介绍2灰度变换方法/Gray scale transformation methodrgbImage=imread(Lena.jpg);grayImage=rgb2gray(rgbImage);J1=imadjust(grayImage,0 1,0 1,2
6、.5);J2=imadjust(grayImage,0 1,0 1,1.5);J3=imadjust(grayImage,0 1,0 1,0.67);J4=imadjust(grayImage,0 1,0 1,0.4);subplot(1,5,1);imshow(J1);title(gamma=2.5);subplot(1,5,2);imshow(J2);title(gamma=1.5);subplot(1,5,3);imshow(grayImage);title(原灰度图像);subplot(1,5,4);imshow(J3);title(gamma=0.67);subplot(1,5,5)
7、;imshow(J4);title(gamma=0.4);左图是一张进行灰度变换的灰度图。先从左上角看,该像素的灰度值为254。然后下一个灰度值143,对其进行映射,得到的值是一个比143少的数。matlab当中常用的灰度变换函数是:imadjust(I,low_in;high_in,low_out;high_out,gamma)2几何变换/Geometric transformation方法%平移 se=translate(strel(1),20 20);img2=imdilate(img1,se);figure,imshow(img2);imwrite(img2,a2.jpg);I=imr
8、ead(baby.bmp);height,width,dim=size(I);tform1=maketform(affine,0,1,0;1,0,0;0,0,1);I1=imtransform(I,tform1,nearest);%旋转img3=imrotate(img1,90);figure,imshow(img3);imwrite(img3,a3.jpg);%缩放img4=imresize(img1,2);figure,imshow(img4);imwrite(img4,a4.jpg);平移转置旋转缩放2图像增强/Image enhancement原理:对数变换可以将图像的低灰度值部分扩展
9、,显示出低灰度部分更多的细节,将其高灰度值部分压缩,减少高灰度值部分。Log变换原理:主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。伽马变换原理:将原始图像的灰度图从比较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的非线性拉伸,重新分配像素值。直方图均衡化原理:利用图像的二次微分对图像进行蜕化,在图像领域中微分是锐化,积分是模糊,即利用邻域像素提高对比度。拉普拉斯算子2归一化/Normalized所谓图像归一化,就是通过一系列变换,将待处理的原始图像转换成相应的唯一标准形式(该标准形式图像对平移、旋转、缩放等仿射变换具有不变特性)。1、什么是归一化?图像归一化
展开阅读全文