NLP自然语言处理—N-gramlanguagemodel课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《NLP自然语言处理—N-gramlanguagemodel课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NLP 自然语言 处理 gramlanguagemodel 课件
- 资源描述:
-
1、1CS 388:Natural Language Processing:N-Gram Language ModelsRaymond J.MooneyUniversity of Texas at AustinLanguage Models Formal grammars(e.g.regular,context free)give a hard“binary”model of the legal sentences in a language.For NLP,a probabilistic model of a language that gives a probability that a st
2、ring is a member of a language is more useful.To specify a correct probability distribution,the probability of all sentences in a language must sum to 1.Uses of Language Models Speech recognition“I ate a cherry”is a more likely sentence than“Eye eight uh Jerry”OCR&Handwriting recognition More probab
3、le sentences are more likely correct readings.Machine translation More likely sentences are probably better translations.Generation More likely sentences are probably better NL generations.Context sensitive spelling correction“Their are problems wit this sentence.”Completion Prediction A language mo
4、del also supports predicting the completion of a sentence.Please turn off your cell _ Your program does not _ Predictive text input systems can guess what you are typing and give choices on how to complete it.N-Gram Models Estimate probability of each word given prior context.P(phone|Please turn off
5、 your cell)Number of parameters required grows exponentially with the number of words of prior context.An N-gram model uses only N1 words of prior context.Unigram:P(phone)Bigram:P(phone|cell)Trigram:P(phone|your cell)The Markov assumption is the presumption that the future behavior of a dynamical sy
6、stem only depends on its recent history.In particular,in a kth-order Markov model,the next state only depends on the k most recent states,therefore an N-gram model is a(N1)-order Markov model.N-Gram Model Formulas Word sequences Chain rule of probability Bigram approximation N-gram approximationnnww
7、w.11)|()|().|()|()()(111112131211knkknnnwwPwwPwwPwwPwPwP)|()(1111kNknkknwwPwP)|()(111knkknwwPwPEstimating Probabilities N-gram conditional probabilities can be estimated from raw text based on the relative frequency of word sequences.To have a consistent probabilistic model,append a unique start()an
8、d end()symbol to every sentence and treat these as additional words.)()()|(111nnnnnwCwwCwwP)()()|(111111nNnnnNnnNnnwCwwCwwPBigram:N-gram:Generative Model&MLE An N-gram model can be seen as a probabilistic automata for generating sentences.Relative frequency estimates can be proven to be maximum like
9、lihood estimates(MLE)since they maximize the probability that the model M will generate the training corpus T.Initialize sentence with N1 symbolsUntil is generated do:Stochastically pick the next word based on the conditional probability of each word given the previous N 1 words.)(|(argmaxMTPExample
10、 from Textbook P(i want english food)=P(i|)P(want|i)P(english|want)P(food|english)P(|food)=.25 x.33 x.0011 x.5 x.68=.000031 P(i want chinese food)=P(i|)P(want|i)P(chinese|want)P(food|chinese)P(|food)=.25 x.33 x.0065 x.52 x.68=.00019Train and Test Corpora A language model must be trained on a large c
11、orpus of text to estimate good parameter values.Model can be evaluated based on its ability to predict a high probability for a disjoint(held-out)test corpus(testing on the training corpus would give an optimistically biased estimate).Ideally,the training(and test)corpus should be representative of
12、the actual application data.May need to adapt a general model to a small amount of new(in-domain)data by adding highly weighted small corpus to original training data.Unknown Words How to handle words in the test corpus that did not occur in the training data,i.e.out of vocabulary(OOV)words?Train a
13、model that includes an explicit symbol for an unknown word().Choose a vocabulary in advance and replace other words in the training corpus with.Replace the first occurrence of each word in the training data with.Evaluation of Language Models Ideally,evaluate use of model in end application(extrinsic
展开阅读全文