书签 分享 收藏 举报 版权申诉 / 36
上传文档赚钱

类型A-New-Dynamic-Bayesian-Network-(DBN)-Approach-for-Identifying-一种新的动态贝叶斯网络识别方法课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5217895
  • 上传时间:2023-02-17
  • 格式:PPT
  • 页数:36
  • 大小:1.30MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《A-New-Dynamic-Bayesian-Network-(DBN)-Approach-for-Identifying-一种新的动态贝叶斯网络识别方法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    New Dynamic Bayesian Network DBN Approach for Identifying 一种 动态 贝叶斯 网络 识别 方法 课件
    资源描述:

    1、A New Dynamic Bayesian Network(DBN)Approach for Identifying Gene Regulatory Networks from Time Course Microarray DataJim VallandinghamBy Min Zou and Suzanne ConzenDynamic Bayesian Networks(DBN)For modeling time-series data Such as microarray data capture the fact that time flows forward Interested i

    2、n how genes regulate each other over timeDynamic Bayesian Networks(DBN)Dynamic Bayesian Networks(DBN)Time Problems with DBNs1.Lack a way to determine biologically relevant transcriptional time lagCurrent methods assume same time lag for all potential regulator-target pairsResults in low accuracy of

    3、predicting gene relationships2.Excessive computational costPrevents use of DBNs with large scale datasetsNew DBN Method Improvements1.Determine biologically relevant transcriptional time lag Look at initial regulation of regulator and potential target to determine time lag Analyzed for each relation

    4、ship Will improve relation predictions 2.Reduce computational cost Only consider genes(up/down)regulated before or at the same time as potential target Reduces search space Reduces costGeneral Outline of MethodHypothetical Example Used to illustrate novel DBN approach 4 hypothetical genes:A D 6 time

    5、 points T1 T6 Evenly spaced:indicative of actual data sets.Process broken into 3 major stepsHypothetical Example Step 1:Selection of potential regulators for each gene First,determine time points of changes in expression for each gene Used Thresholds to determine when regulation has occurred 1.2 fol

    6、d up-regulation 0.7 fold down-regulation Find Potential RegulatorsPick only genes with earlier or simultaneous changes as regulator candidatesUsed to reduce number of nodes considered Hypothetical ExampleInitial up-regulation at T4Up-regulation thresholdDown-regulation thresholdDynamic Expression pr

    7、ofile for Gene DHypothetical ExampleDynamic Expression profiles for Genes A&DPossible regulator of DHypothetical ExampleHypothetical Example Step 2:Estimation of biologically relevant transcriptional time lag Time between expression changes of potential regulator and target genes represents a biolog

    8、ically relevant time period Can vary from 0(simultaneous)to many steps Using this time period should result in an increase of correct relationships Hypothetical Example Step 2,cont:Looking at D as target gene and A-C as potential regulators A:2 time units B:2 time units C:1 time unit Group potential

    9、 regulators based on time lagA&BCHypothetical Examplet=two time units Hypothetical ExampleHypothetical Example Step 3:Gene regulatory network modeling Use DBN to predict gene regulatory network For DBN variables:Use 2 if expression level is equal to or higher than average expression level over all t

    10、ime points Use 1 if expression level is lower than average level Focus of DBN is to predict correlation,not expression value for any given point Hypothetical Example Step 3,cont:Generate subgroups of groups of potential regulators based on user defined minimum and maximum regulators For Hypothetical

    11、 Example:Subsets for group A&B A,B,A,B Assuming maximum 2,minimum 1 Subset for group C CHypothetical ExampleStep 3,cont:For each subset,using transcriptional time lag from step 2 to organize expression data into NxM matrixN:number of potential regulators+targetT:number of time points from original s

    12、amplingt:estimated transcriptional time lag From step 2M:number of time points in the data matrix=T t Hypothetical ExampleStep 3,cont:Expression value of potential regulators at time Tn are aligned with expression value of the target gene at time Tn+t t may vary for the different expression data mat

    13、ricesHypothetical Example1=below average2=at or above averageHypothetical ExampleStep 3,cont:Matrix used to find conditional probabilities of the expression the of target gene in relation to its potential regulator gene(s)Pick subset of potential regulator(s)with highest log marginal likelihood scor

    14、e as the estimated regulator(s)Hypothetical ExampleConditional probabilitiesTarget DRegulator AGeneT1T2T3T4A1222D1221Discrete Expression ValuesBiological Experimentation Comparison between their method and standard DBN from Murphys BNT Toolkit Used Chous yeast cell cycle data as input Large number o

    15、f time steps(16)and small time intervals(10 min)Previously established relationships used to confirm accuracy.Biological ExperimentationPartial view of previously known regulator-target pairsSimon,I.,Barnett,J.,et al(2019)Serial regulation of transcriptional regulators in the yeast cell cycle.Cell,1

    16、06,697708.Biological ExperimentationTwo experiments performed:1.Prior knowledge usedUsed 9 transcription factors to be considered regulators of the 116 genes totalLooked for the targets of these TFs2.No prior knowledge usedAllowed any TF to target pairingBiological Experimentation Metrics Correctly

    17、Identified Relationships Association matches previously found pathways Misdirected Association in reverse order of known relationship Specificity Percentage of correctly predicted known gene relationships/total number of predicted gene relationships Computational time Time required to generate DBNEx

    18、periment 1 ResultsNetworkCorrectly Identified RelationshipsMisdirected RelationshipsSpecificity(%)Computational Time(s)Novel Method4614010Standard 18411609 TFs considered as regulatorsExperiment 1 Results All misdirected relationships of BNT corrected in new approach.1 Misdirection in new approach d

    19、ue to earlier initial up regulation of target rather than regulator For 70%of known yeast interactions the regulator expression change is earlier or simultaneous with targetExperiment 1 Results Using estimated transcriptional time lags gave all relationships found only in new method stronger statist

    20、ical correlations Indicates that a biologically relevant and variable time lag is better suited to finding associations than static time step determined by sampling rate 8 uniquely identified by BNT 3 had better correlation at one time step(10 min)rather than the estimated(0 min)5 had earlier expres

    21、sion changes of target than regulatorsExperiment 2 ResultsNetworkCorrectly Identified RelationshipsMisdirected RelationshipsSpecificity(%)Computational TimeNovel Method1731015 minStandard 8738 hoursNo previous knowledge consideredExperiment 2 Results 12 correct relations found in new approach and no

    22、t BNT 10 of these found because of the use of biological relevant transcriptional time lagSummary New method does increase relationship prediction over standard method in BNT Also significantly reduces computational time Requires min&max number of regulators Requires thresholds for up and down regulation Pre/simultaneous regulator assumption only holds true for 70%of the relationships Missing relevant relationshipsRelationships Found Exp 1

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:A-New-Dynamic-Bayesian-Network-(DBN)-Approach-for-Identifying-一种新的动态贝叶斯网络识别方法课件.ppt
    链接地址:https://www.163wenku.com/p-5217895.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库