《波的干扰》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《波的干扰》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 波的干扰 干扰 课件
- 资源描述:
-
1、 Lecture 2:InterferenceS3S2PIncident wave(wavelength l)yLddS12dOverview:lInterference of Sound waveslTwo-Slit Interference of LightlPhasorslMultiple-Slit InterferencelWhen two waves are present at the same point in space and time they lead to interference.For the single w w caselAdd amplitudes(e.g.,
2、pressures or electric fields).lWhat we observe however is Intensity(absorbed power).I=A2Stereo speakers:Listener:y2=A1cos(kx-w wt+)y1=A1cos(kx-w wt)121y+y=2A cos(/2)cos(kxt/2)w A =0:waves add“in phase”(“constructive”)I=|2 A1|2=4|A1|2=4I1 =p=p:waves add“out of phase”(“destructive”)I=|2 A1*0|2=0In thi
3、s lecture we confine ourselves to waves with the same wavelengths.The two waves at this point are“out of phase”.Their phase difference depends on the path difference d d r2-r1 relative to wavelength l l.r2r1The relative phase of(two or more)waves also depends on the relative distances to the sources
4、:=2p(d/l)=2p(d/l)=360 =360(d/l)(d/l)ld=p2=“#wavelengths out of phase”(for in-phase sources)d d I I0 0l/4l/4l/2l/2l l Path difference Phase differenceA=2A1cos(/2)d d I I0 0 4I 4I1 1l/4l/4 2I 2I1 1l/2l/2 0 0l l 4I 4I1 1d d 0 00 02A2A1 1l/4l/4p/2 p/2 2A2A1 1l/2l/2p p 0 0l l2p2p 2A 2A1 1 Path difference
5、 Phase differenceThe two waves at this point are“out of phase”.Their phase difference depends on the path difference d d r2-r1 relative to wavelength l l.r2r1A=2A1cos(/2)The relative phase of(two or more)waves also depends on the relative distances to the sources:=2p(d/l)=2p(d/l)=360 =360(d/l)(d/l)l
6、d=p2=“#wavelengths out of phase”(for in-phase sources)Path difference Phase differenceA=2A1cos(/2)Here we use equal intensities.What is the spatial average intensity?Plot here as a function of.0 l 2l0 l 2l3l 4l 5l3l 4l 5l A=2A1cos(/2)I=4A12cos2(/2)0 2p0 2p 4p 6p 8p 10p 4p 6p 8p 10pd dConstructive In
7、terferenceDestructive Interference2A14A12Iave=4I1*0.5=2I1For equal intensities.Procedure:1)Compute path-length difference:d d=r2-r1=2)Compute wavelength:l l=3)Compute phase difference(in degrees):=4)Write a formula for the resultant amplitude:5)Compute the resultant intensity,I=Sound velocity:v=330
8、m/sr2r13 m4 mEach speaker alone produces intensity I1=1 W/m2 at the listener,and f=900 Hz.Drive the speakers in phase.Compute the intensity I at the listener:=2p(d/l)=2p(d/l)with d=d=r2 r1ld= path-length difference:d d=r2-r1=1 m2)Compute wavelength:l l=v/f=(330 m/s)/(900 Hz)=0.367 m3)Compute phase d
9、ifference(in degrees):=360 (d(d/l)=l)=360(1/0.367)=981 4)Write a formula for the resultant amplitude:A=2A1cos(/2),A1=I15)Compute the resultant intensity,I=4 I1cos2(/2)=4(1 W/m2)(0.655)2 =1.72W/m2Sound velocity:v=330 m/sr2r13 m4 m=2p(d/l)=2p(d/l)with d=d=r2 r1ld= speaker alone produces intensity I1=1
10、 W/m2 at the listener,and f=900 Hz.Drive the speakers in phase.Compute the intensity I at the listener:What happens to the intensity at the listener if we decrease the frequency f by a small amount?(Recall the phase shift was 981.)a.decrease b.stay the samec.increaser2r1What happens to the intensity
11、 at the listener if we decrease the frequency f by a small amount?(Recall the phase shift was 981.)a.decrease b.stay the samec.increaser2r1f decreases l l increases d/l d/l decreases decreases I decreases(see figure)I 0 360 720 900 =981 lThe resultant intensity of two equal-intensity waves of the sa
12、me wavelength at the same point in space is:I=4 I1cos2(/2)lFor nonequal intensities,the maximum and minimum intensities areImax=|A1+A2|2 Imin=|A1-A2|2lThe phase difference between the two waves may be due to a difference in their source phases or a difference in the path lengths to the observer,or b
13、oth.The difference due to path lengths iswith d=r2 r1=2p(d/l)=2p(d/l)What happens when a plane wave meets a small aperture?Answer:The result depends on the ratio of the wavelength l l to the size of the aperture a:Huygens principle(1678)All points on wavefront are point sources for spherical seconda
14、ry wavelets with speed,frequency equal to initial wave.Wavefront at t=0 Wavefront at time tl l aSimilar to a wave from a point source.“Diffraction”:Interference of waves from objects or aperturesl l d.S1S2ObserverLightdl lr2r1ObserverSoundl ldlAssume 2 sources radiating in phase:d=d=dsinq qWhen obse
15、rver distance slit spacing (r d):=2p(d/l)=2p(=2p(d/l)=2p(d sinq/l)/l)Normal to dq qdd dObserverrq qdd dm=0,1,2,.d d=dsinq q=ml lConstructiveInterferenced d=dsinq q=(m+1/2)l lDestructiveInterference Basic result:m=0m=1m=2m=-1m=-2q qq q=sin-1(ml/l/d)“lines”of constructive interference:dqqI2l2l/dl l/d0
16、-l l/dr Usually we care about the linear (as opposed to angular)displacement y of the pattern(because our screens are often flat):Lyy=L tanq qy m(l/l/d)Ly (m+1/2)(l/l/d)LdqY Lq qI2l2lL/dl lL/d0-l lL/dLThe slit-spacing d is often large compared to l l,so that q q is small.Then we can use the small an
展开阅读全文