书签 分享 收藏 举报 版权申诉 / 63
上传文档赚钱

类型数字图像处理-冈萨雷斯-课件英文版-Chapter05-图像复原.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5214533
  • 上传时间:2023-02-17
  • 格式:PPT
  • 页数:63
  • 大小:6.71MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数字图像处理-冈萨雷斯-课件英文版-Chapter05-图像复原.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数字图像 处理 冈萨雷斯 课件 英文 Chapter05 图像 复原
    资源描述:

    1、Digital Image ProcessingChapter 5:Image Restoration23 June 2006(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image restoration is to restore a degraded image back tothe original image while image enhancement is to manipulate the image so that it is suitable f

    2、or a specificapplication.Degradation model:),(),(),(),(yxyxhyxfyxgwhere h(x,y)is a system that causes image distortion and(x,y)is noise.Noise cannot be predicted but can be approximately described instatistical way using the probability density function(PDF)Gaussian noise:222/)(21)(zezpRayleigh nois

    3、eazfor 0for )(2)(/)(2azeazbzpbazErlang(Gamma)noise0zfor 00for )()!1()(1zeazbzazpazbbExponential noiseUniform noiseImpulse(salt&pepper)noiseazaezp)(otherwise 0afor a-b1)(bzzpotherwise 0for for )(bzPazPzpba(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.PDF tells

    4、 how mucheach z value occurs.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageHistogramDegraded images),(),(),(yxyxfyxg(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageHistogramDegraded images),()

    5、,(),(yxyxfyxg(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Periodic noise looks like dotsIn the frequencydomain(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.We cannot use the image histogram to estimate noise PDF.It is

    6、 better to use the histogram of one areaof an image that has constant intensity to estimate noise PDF.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Band reject filterRestored imageDegraded imageDFTPeriodic noisecan be reduced bysetting frequencycomponentscorr

    7、esponding to noise to zero.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Use to eliminate frequency components in some bandsPeriodic noise from theprevious slide that is Filtered out.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2

    8、nd Edition.A notch reject filter is used to eliminate some frequency components.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Degraded imageDFTNotch filter(freq.Domain)Restored imageNoise(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processi

    9、ng,2nd Edition.Degraded imageDFT(no shift)Restored imageNoiseDFT of noiseArithmetic mean filter or moving average filter(from Chapter 3)xyStstsgmnyxf),(),(1),(Geometric mean filtermnStsxytsgyxf1),(),(),(mn=size of moving windowDegradation model:),(),(),(),(yxyxhyxfyxgTo remove this part(Images from

    10、Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageImage corrupted by AWGNImage obtained using a 3x3geometric mean filterImage obtained using a 3x3arithmetic mean filterAWGN:Additive White Gaussian NoiseHarmonic mean filterxyStstsgmnyxf),(),(1),(Contraharmonic me

    11、an filterxyxyStsQStsQtsgtsgyxf),(),(1),(),(),(mn=size of moving windowWorks well for salt noisebut fails for pepper noiseQ=the filter orderPositive Q is suitable for eliminating pepper noise.Negative Q is suitable for eliminating salt noise.For Q=0,the filter reduces to an arithmetic mean filter.For

    12、 Q=-1,the filter reduces to a harmonic mean filter.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by pepper noise with prob.=0.1Image corrupted by salt noise with prob.=0.1Image obtained using a 3x3contra-harmonic mean filterWith Q=1.5Image obt

    13、ained using a 3x3contra-harmonic mean filterWith Q=-1.5(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by pepper noise with prob.=0.1Image corrupted by salt noise with prob.=0.1Image obtained using a 3x3contra-harmonic mean filterWith Q=-1.5Imag

    14、e obtained using a 3x3contra-harmonic mean filterWith Q=1.5subimageOriginal imageMoving windowStatistic parametersMean,Median,Mode,Min,Max,Etc.Output imageMedian filter),(median),(),(tsgyxfxyStsMax filter),(max),(),(tsgyxfxyStsMin filter),(min),(),(tsgyxfxyStsMidpoint filter),(min),(max21),(),(),(ts

    15、gtsgyxfxyxyStsStsReduce“dark”noise (pepper noise)Reduce“bright”noise (salt noise)A median filter is good for removing impulse,isolated noiseDegraded imageSalt noisePepper noiseMovingwindowSorted arraySalt noisePepper noiseMedianFilter outputNormally,impulse noise has high magnitude and is isolated.W

    16、hen we sort pixels in the moving window,noise pixels are usually at the ends of the array.Therefore,its rare that the noise pixel will be a median value.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by salt-and-pepper noise with pa=pb=0.1Image

    17、s obtained using a 3x3 median filter1423(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by pepper noise with prob.=0.1Image corrupted by salt noise with prob.=0.1Image obtained using a 3x3max filterImage obtained using a 3x3min filterxyStsrtsgdm

    18、nyxf),(),(1),(where gr(s,t)represent the remaining mn-d pixels after removing the d/2 highest and d/2 lowest values of g(s,t).This filter is useful in situations involving multiple typesof noise such as a combination of salt-and-pepper and Gaussian noise.Formula:(Images from Rafael C.Gonzalez and Ri

    19、chard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by additiveuniform noiseImage obtained using a 5x5arithmetic mean filterImage additionallycorrupted by additivesalt-and-pepper noise122Image obtained using a 5x5geometric mean filter2Image corrupted by additiveuniform noiseImage obtai

    20、ned using a 5x5 median filterImage additionallycorrupted by additivesalt-and-pepper noise122Image obtained using a 5x5alpha-trimmed mean filterwith d=52Image obtained using a 5x5arithmetic mean filterImage obtained using a 5x5geometric mean filterImage obtained using a 5x5 median filterImage obtaine

    21、d using a 5x5alpha-trimmed mean filterwith d=5-Filter behavior depends on statistical characteristics of local areas inside mxn moving window-More complex but superior performance compared with“fixed”filtersStatistical characteristics:General concept:xyStsLtsgmnm),(),(1Local mean:Local variance:xySt

    22、sLLmtsgmn),(22),(12Noise variance:Purpose:want to preserve edges1.If 2 is zero,No noisethe filter should return g(x,y)because g(x,y)=f(x,y)2.If L2 is high relative to 2,Edges(should be preserved),the filter should return the value close to g(x,y)3.If L2=2,Areas inside objectsthe filter should return

    23、 the arithmetic mean value mLLLmyxgyxgyxf),(),(),(22Formula:Concept:(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by additiveGaussian noise with zero meanand 2=1000Imageobtained using a 7x7arithmeticmean filterImageobtained using a 7x7geometri

    24、cmean filterImageobtained using a 7x7adaptivenoise reduction filterAlgorithm:Level A:A1=zmedian zminA2=zmedian zmaxIf A1 0 and A2 0,goto level BElse increase window sizeIf window size 0 and B2 0,return zxyElse return zmedianzmin=minimum gray level value in Sxyzmax=maximum gray level value in Sxyzmed

    25、ian=median of gray levels in Sxyzxy=gray level value at pixel(x,y)Smax=maximum allowed size of SxywherePurpose:want to remove impulse noise while preserving edgesLevel A:A1=zmedian zmin A2=zmedian zmax Else Window is not big enough increase window sizeIf window size 0 and B2 0 and A2 0,goto level BL

    26、evel B:Determine whether zmedianis an impulse or notDetermine whether zxyis an impulse or not(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Image corrupted by salt-and-pepper noise with pa=pb=0.25Image obtained using a 7x7median filterImage obtained using an a

    27、daptivemedian filter withSmax=7More small details are preserved(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Degradation model:),(),(),(),(yxyxhyxfyxgPurpose:to estimate h(x,y)or H(u,v),(),(),(),(vuNvuHvuFvuGMethods:1.Estimation by Image Observation2.Estimati

    28、on by Experiment3.Estimation by ModelingorWhy?If we know exactly h(x,y),regardless of noise,we can do deconvolution to get f(x,y)back from g(x,y).f(x,y)f(x,y)*h(x,y)g(x,y)SubimageReconstructedSubimage),(vuGs),(yxgs),(yxfsDFTDFT),(vuFsRestoration process byestimationOriginal image(unknown)Degraded im

    29、age),(),(),(),(vuFvuGvuHvuHsssEstimated Transfer functionObservationThis case is used when weknow only g(x,y)and cannot repeat the experiment!Used when we have the same equipment set up and can repeat the experiment.Input impulse imageSystemH()Response image fromthe system),(vuG),(yxg),(yxAAyxADFT),

    30、(AvuGvuH),(),(DFTDFT(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Used when we know physical mechanism underlying the image formation process that can be expressed mathemat

    31、ically.AtmosphericTurbulence model6/522)(),(vukevuHExample:Original imageSevere turbulencek=0.00025k=0.001k=0.0025Low turbulenceMild turbulenceAssume that camera velocity is)(),(00tytxThe blurred image is obtained bydttyytxxfyxgT)(),(),(000where T=exposure time.dtdxdyetyytxxfdxdyedttyytxxfdxdyeyxgvu

    32、GTvyuxjvyuxjTvyuxj 0)(200)(2000)(2)(),()(),(),(),(dtevuFdtevuFdtdxdyetyytxxfvuGTtvytuxjTtvytuxjTvyuxj 0)()(20)()(20)(2000000),(),()(),(),(Then we get,the motion blurring transfer function:dtevuHTtvytuxj0)()(200),(For constant motion),()(),(00btattytx)(0)(2)(sin()(),(vbuajTvbuajevbuavbuaTdtevuH(Image

    33、s from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.For constant motion)()(sin()(),(vbuajevbuavbuaTvuHOriginal imageMotion blurred imagea=b=0.1,T=1(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.after we obtain H(u,v),we can estimat

    34、e F(u,v)by the inverse filter:),(),(),(),(),(),(vuHvuNvuFvuHvuGvuFFrom degradation model:),(),(),(),(vuNvuHvuFvuGNoise is enhancedwhen H(u,v)is small.To avoid the side effect of enhancing noise,we can apply this formulation to ponent(u,v)with in a radius D0 from the center of H(u,v).In practical,the

    35、 inverse filter is notPopularly used.6/522)(0025.0),(vuevuHOriginal imageBlurred imageDue to TurbulenceResult of applyingthe full filterResult of applyingthe filter with D0=70 Result of applyingthe filter with D0=40 Result of applyingthe filter with D0=85(Images from Rafael C.Gonzalez and Richard E.

    36、Wood,Digital Image Processing,2nd Edition.Objective:optimize mean square error:22)(ffEe),(),(/),(),(),(),(1 ),(),(/),(),(),(),(),(),(),(),(),(),(222*2*vuGvuSvuSvuHvuHvuHvuGvuSvuSvuHvuHvuGvuSvuHvuSvuSvuHvuFffffWiener Filter Formula:whereH(u,v)=Degradation functionS(u,v)=Power spectrum of noiseSf(u,v)

    37、=Power spectrum of the undegraded image),(),(/),(),(),(),(1),(22vuGvuSvuSvuHvuHvuHvuFfWiener Filter Formula:Approximated Formula:),(),(),(),(1),(22vuGKvuHvuHvuHvuFDifficult to estimatePractically,K is chosen manually to obtained the best visual result!Original imageBlurred imageDue to TurbulenceResu

    38、lt of the full inverse filterResult of the inverse filter with D0=70 Result of the full Wiener filterOriginal imageResult of the inverse filter with D0=70 Result of the Wiener filterBlurred imageDue to Turbulence(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.I

    39、mage degradedby motion blur+AWGNResult of theinverse filterResult of theWiener filter2=6502=3252=130Note:K is chosenmanuallyDegradation model:),(),(),(),(yxyxhyxfyxgWritten in a matrix formHfgObjective:to find the minimum of a criterion function101022),(MxNyyxfCSubject to the constraint22fHg),(),(),

    40、(),(),(22*vuGvuPvuHvuHvuFWe get a constrained least square filterwhereP(u,v)=Fourier transform of p(x,y)=010141010wherewwwT2),(),(),(),(),(22*vuGvuPvuHvuHvuFConstrained least square filter is adaptively adjusted to achieve the best result.Results from the previous slide obtained from the constrained

    41、 least square filter Image degradedby motion blur+AWGNResult of theConstrainedLeast square filterResult of theWiener filter2=6502=3252=130DefinefHgrIt can be shown that2)(rrrTWe want to adjust gamma so thata22rwhere a=accuracy factor1.Specify an initial value of 2.Compute3.Stop if is satisfiedOtherw

    42、ise return step 2 after increasing if or decreasing ifUse the new value of to recompute112ra22ra22r),(),(),(),(),(22*vuGvuPvuHvuHvuF),(),(),(),(),(22*vuGvuPvuHvuHvuF),(),(),(),(vuFvuHvuGvuR101022),(1MxNyyxrMNr101022),(1MxNymyxMN1010),(1MxNyyxMNmmMN2222rFor computingFor computing(Images from Rafael C

    43、.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageBlurred imageDue to TurbulenceResults obtained from constrained least square filtersUse wrong noise parametersCorrect parameters:Initial =10-5Correction factor=10-6a=0.252=10-5Wrong noise parameter2=10-2Use correct noise

    44、 parameters),(),(),(),(),(),(),(),(12*2*vuGvuSvuSvuHvuHvuHvuHvuFf This filter represents a family of filters combined into a single expression=1 the inverse filter=0 the Parametric Wiener filter=0,=1 the standard Wiener filter=1,0.5 More like the Wiener filterAnother name:the spectrum equalization f

    45、ilterThese transformations are often called rubber-sheet transformations:Printing an image on a rubber sheet and then stretch this sheet accordingto some predefine set of rules.A geometric transformation consists of 2 basic operations:1.A spatial transformation:Define how pixels are to be rearranged

    46、 in the spatiallytransformed image.2.Gray level interpolation:Assign gray level values to pixels in the spatiallytransformed image.Distorted image g1.Select coordinate(x,y)in f to be restored2.Compute),(yxrx),(yxsy 3.Go to pixel in a distorted image g),(yxImage f to be restored4.get pixel value atBy

    47、 gray level interpolation),(yxg5.store that value in pixel f(x,y)135),(yx),(yx(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.To map between pixel coordinate(x,y)of f and pixel coordinate(x,y)of g),(yxrx),(yxsy For a bilinear transformation mapping between a pa

    48、ir of Quadrilateral regions4321),(cxycycxcyxrx8765),(cxycycxcyxsy),(yx),(yxTo obtain r(x,y)and s(x,y),we need to know 4 pairs of coordinates and its correspondingwhich are called tiepoints.),(yx),(yx(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Since may not

    49、be at an integer coordinate,we need to Interpolate the value of ),(yx),(yxgExample interpolation methods that can be used:1.Nearest neighbor selection2.Bilinear interpolation3.Bicubic interpolationOriginal image and tiepointsTiepoints of distortedimageDistorted imageRestored imageUse nearestneighbor

    50、 intepolation(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original image and tiepointsTiepoints of distortedimageDistorted imageRestored imageUse bilinear intepolation(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Ima

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数字图像处理-冈萨雷斯-课件英文版-Chapter05-图像复原.ppt
    链接地址:https://www.163wenku.com/p-5214533.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库