等比数列复习省一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等比数列复习省一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列复习 省一等奖课件 等比数列 复习 一等奖 课件
- 资源描述:
-
1、主讲老师:陈震主讲老师:陈震等比数列复习等比数列复习1.等比数列的定义等比数列的定义2.等比数列的通项公式等比数列的通项公式3.等比中项等比中项)0,(111 qaqaann知识归纳知识归纳4.等比数列的判定方法等比数列的判定方法(1)anan1q(n2),q是不为零的常数,是不为零的常数,an10 an是等比数列是等比数列.知识归纳知识归纳4.等比数列的判定方法等比数列的判定方法(1)anan1q(n2),q是不为零的常数,是不为零的常数,an10 an是等比数列是等比数列.(2)an2an1an1(n2,an1,an,an10)an是等比数列是等比数列.知识归纳知识归纳4.等比数列的判定方
2、法等比数列的判定方法(1)anan1q(n2),q是不为零的常数,是不为零的常数,an10 an是等比数列是等比数列.(2)an2an1an1(n2,an1,an,an10)an是等比数列是等比数列.(3)ancqn(c,q均是不为零的常数均是不为零的常数)an是等比数列是等比数列.知识归纳知识归纳知识归纳知识归纳5.等比数列的性质等比数列的性质(1)当当q1,a10或或0q1,a10时,时,an是是递增数列递增数列;当当q1,a10或或0q1,a10时,时,an是是递减数列递减数列;当当q1时,时,an是是常数列常数列;当当q0时,时,an是是摆动数列摆动数列.知识归纳知识归纳5.等比数列的
3、性质等比数列的性质(2)anamqnm(m、nN*).(1)当当q1,a10或或0q1,a10时,时,an是是递增数列递增数列;当当q1,a10或或0q1,a10时,时,an是是递减数列递减数列;当当q1时,时,an是是常数列常数列;当当q0时,时,an是是摆动数列摆动数列.知识归纳知识归纳(3)当当mnpq(m、n、q、pN*)时,时,有有amanapaq.5.等比数列的性质等比数列的性质 知识归纳知识归纳(3)当当mnpq(m、n、q、pN*)时,时,有有amanapaq.5.等比数列的性质等比数列的性质(4)an是有穷数列,则与首末两项等距是有穷数列,则与首末两项等距 离的两项积相等,且
4、等于首末两项之离的两项积相等,且等于首末两项之 积积.知识归纳知识归纳 若若bn是公比为是公比为q的等比数列,则数列的等比数列,则数列 anbn是公比为是公比为qq的等比数列;的等比数列;数列数列 是公比为是公比为 的等比数列;的等比数列;|an|是公比为是公比为|q|的等比数列的等比数列.1naq15.等比数列的性质等比数列的性质(5)数列数列 an(为不等于零的常数为不等于零的常数)仍是仍是 公比为公比为q的等比数列;的等比数列;知识归纳知识归纳(6)在在an中,每隔中,每隔k(kN*)项取出一项,项取出一项,按原来顺序排列,所得新数列仍为等按原来顺序排列,所得新数列仍为等 比数列且公比为
5、比数列且公比为qk1.5.等比数列的性质等比数列的性质 知识归纳知识归纳(7)当数列当数列an是各项均为正数的等比数列是各项均为正数的等比数列 时时,数列数列lgan是公差为是公差为lgq的等差数列的等差数列.5.等比数列的性质等比数列的性质(6)在在an中,每隔中,每隔k(kN*)项取出一项,项取出一项,按原来顺序排列,所得新数列仍为等按原来顺序排列,所得新数列仍为等 比数列且公比为比数列且公比为qk1.知识归纳知识归纳(8)an中,连续取相邻不重复两项的和中,连续取相邻不重复两项的和(或差或差)构成公比为构成公比为q2的等比数列的等比数列(q1).5.等比数列的性质等比数列的性质 知识归纳
6、知识归纳(9)若若m、n、p(m、n、pN*)成等差)成等差数列时,数列时,am、an、ap成等比数列成等比数列.5.等比数列的性质等比数列的性质(8)an中,连续取相邻不重复两项的和中,连续取相邻不重复两项的和(或差或差)构成公比为构成公比为q2的等比数列的等比数列(q1).知识归纳知识归纳6.等比数列的前等比数列的前n项和公式项和公式 )1(1)1()1(11qqqaq naSnn知识归纳知识归纳7.等比数列前等比数列前n项和的一般形式项和的一般形式)1(qAqASnn知识归纳知识归纳8.等比数列的前等比数列的前n项和的性质项和的性质(1)若某数列前若某数列前n项和公式为项和公式为Snan
展开阅读全文