书签 分享 收藏 举报 版权申诉 / 129
上传文档赚钱

类型微积分英文课件 -003.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5209906
  • 上传时间:2023-02-17
  • 格式:PPT
  • 页数:129
  • 大小:2.20MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《微积分英文课件 -003.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    微积分英文课件 _003 微积分 英文 课件
    资源描述:

    1、The best way to learn mathematics is to do mathematicsChapter 4 Applications of differentiation4.1 Maximum and minimum values4.2 The Mean value Theorem4.3 How Derivatives Affect the shape of a Graph4.4 Indeterminate Forms and L Hospitals Rule4.5 Summary of Curve Sketching4.6 Graphing with Calculus a

    2、nd Calculators4.7 Optimization Problems4.8 Applications to business and Economics4.9 Newtons Method4.10 Antiderivatives A function f has an(or)at cif()for all xin D,where Dis the domain of f.absolute maxiumuglobal maximummaxThe number of()is called theof f on D.Similarly,f hasimum valueabsolute mini

    3、manat cifD()()for all xefuinitioninmf cf xf cf cf xD and the number f(c)is called theof f on D.The maximum and minimum values of fare calledminmumvalueextreme valuethes of f.4.1 Maximum and minimum values A function f has amaximum(or)at cif()when x is near c.This meanthat()for all x in some openinte

    4、rval containing c.SimilaLocalrelrly,f hasative maximumlocal minmuDefinaat c if()()when x is near cti nm.i of cf xf cf xf cf xExample:4118163)(234xxxxxfxxfcos)(2)(xxf3)(xxfExample:Example:Example:The maximum and minimum values of f are called the extreme values of f.cd(c,f(c)(d,f(d)int,maxmum()minimu

    5、m(),.If f is continuouson a closederval a b then f attainsan absolutevalue f c and anabsolutevalue f d at somenumbers cThe ExtremeTheoand d in ambreWe have seen that some functions have extreme values,whereas others do not.The following theoremgives conditions under which a function is guaranteed to

    6、 possess extreme values.Example)1,0(,xxyThis function has no maximum or minimum xoy1121,31,110,1)(xxxxxxfxoy1122机动 目录 上页 下页 返回 结束 ExampleThis function has no maximum or minimum Caution:nThe conditions cannot be weakened.Example22341()122223xxxf xxxxx Caution:The conditions is sufficient,but not nece

    7、ssary.This function has minimum value f(-1)=-4This function has maximum value f(-4)nProblem:nThe Extreme Value Theorem says that a continuous function on a closed interval has a maximum value and minimum value.nBut it does not tell us how to find these extreme values.nWe start by looking for local e

    8、xtreme values.If f has a local maximumor minmum at c,and if f(c)exiFermats Tsts,thenheof=e0r m(c)cProof:Without loss of generality,we consider local Maximum:(),()(),chcf chf c()()0,f chf chWe haveif 0,h()()0,f chf ch0,h if 0()()lim0hf chf ch()fc()fc()()()0.fcfcfc0()()lim0hf chf ch()fcThereforeBecaus

    9、e exists,ThusnFermats Theorem does suggest that we should at least start looking for extreme values of f at the numbers c where or does not exist.nDefinition:nA critical number of a function f is a number c in the domain of f such that either or does not exist.0)(cf0)(cf)(cf)(cf nConclusion:If f has

    10、 a local maximum or minimum at c,then c is a critical number of f.nTo find an absolute maximum or minimum of a continuous function on a closed interval,we note that either it is local in which case it occur at a critical number by the above conclusion nor it occurs at an endpoint of the interval.nTh

    11、e Closed Interval Method n To find the absolute maximum and minimum values of a continous function f on a closed interval a,b:n1)Find the values of f at the critical numbers of f in(a,b).n2)Find the values of f at the endpoints of the interval.n3)The largest of the values from step 1)and step 2)is t

    12、he absolute maximum value;the smallest of these values is the absolute minimum value.nExample Find the absolute maximum and minimum values of the functionnSolution:Since f is continuous on the given closed interval,we can use the Closed Interval Method:42113)(23xxxxf1233maximumminimum()(1)12Find the

    13、 absoluteandvalueof the function f xxxx ,.解解答答23133(1)xyxx,10,13Thusthe critical numbers arexxand xTherefore,0y if130,xthat is,1,3x and dose not existywhen0,1.xor x解解答答x()fx134001/334/310232The values of at these critical numbers and at the endpoints of the interval areyComparing these numbers,we ge

    14、t 3max(2)2yf3min(1)4.yf kmp 4.2 The Mean Value TheoremnRolle s Theorem:Let f be a function that satisfy the following three hypotheses:n1)f is continuous on the closed interval a,b.n2)f is differentiable on the open interval(a,b).n3)f(a)=f(b)nThen there is a number c in(a,b)such that 0)(cfbachaipisi

    15、:z nProof Because f(x)is continuous on a,b,by the Extreme Value Theorem,we know that f(x)can take on its absolute maximum M and absolute minimum m there are two cases:nCase1:M=m means that f(x)is a constant function,then ,so any number c in(a,b)is OK!ab0)(xfn Case2:m0 for all x in(a,b),then f(x)is s

    16、trictly increasing on a,b.(2)If f(x)0 for all x in(a,b),then f(x)is strictly decreasing on a,b.PROOF Choose any two points x1 and x2 in a,b with x10 for all x in I,then the graph of f(x)is concave upward on I.If f”(x)0 when x-1/3 and f”(x)0 when x-1/3.Intervalsign of f -+behavior of f(,1/3)1/3(1/3,)

    17、the sign of and the behavior of f are recorded below.f-12-8-4 4812-12-8-44812 By Concavity Test,we get the following results:the graph of f(x)is concave downward on(-,-1/3)and is concave upward on(-1/3,+).So the point(-1/3,-88/27)is an inflection point.The graph of f is sketched in Figure 2.-12-8-4

    18、4812-12-8-44812Figure 2The Second Derivative Test Suppose that f(x)is differentiable on an open interval containing c and that f(c)=0.1 If f”(c)0,then f(x)has a local minimum at c.Example 6 Discuss the curve y=f(x)=x4-4x3 with respect to local maxima and minima.Solution 3222()4124(3)()122412(2)fxxxx

    19、xfxxxx xTo find the critical numbers we set f(x)=0 and obtain x=0 and x=3.To use the Second Derivative Test we evaluate f”at these critical numbers:f”(0)=0 f”(3)=360 Since f(3)=0 and f”(3)0,f(3)=-27 is a local minimum.Since f”(0)=0,the Second Derivative Test gives no information about the critical n

    20、umber 0.But since f(x)0 for x0 and also for 0 x3,the First Derivative Test tells us that f does not have a local maximum or minimum at 0.Example 7 Sketch the graph of the function f(x)=x2/3(6-x)1/3.Solution 1/32/34/35/348()()(6)(6)Since()0 when4 and()does not exist when 0 or 6,the critical numbers a

    21、re 0,4,and 6.xfxfxxxxxfxxfxxx Interval (-,0)(0,4)(4,6)(6,+)f +fdecreasing on(-,0)increasing on(0,4)decreasing on(4,6)decreasing on(6,+)By the First derivative Test,f(0)=0 is a local minimum and f(4)=25/3 is a local maximum.The sign of f does not change at 6,so there is no minimum or maximum there.Lo

    22、oking at the expression for f”(x),we have f”(x)0 for x0 and for 0 x0 for x6.Thus f is concave downward on(-,0)and(0,6)and concave upward on(6,+),and the only inflection point is(6,0).The graph is sketched in Figure 4.Figure 44.5 Summary of Curve sketchingGuidelines for Sketching a CurveA.Domain E.In

    23、tervals of Increase or DecreaseB.Intercepts F.Local Extreme ValuesC.Symmetry G.Concavity and Points of InflectionD.Asymptotes H.Sketch the CurveExample 1 Use the guidelines to sketch the curve222.1xyxExample 1 Use the guidelines to sketch the curve222.1xyxA.The domain isB.The x-and y-intercepts are

    24、both 0.C.Since f(-x)=f(x),the function f is even.D.Therefore,the line y=2 is a horizontal asymptote.(,1)(1,1)(1,).222lim21xxx2212lim1xxx 2212lim1xxx 2212lim1xxx 2212lim1xxx Therefore,the lines x=1 and x=-1 are vertical asymptotes.E.2222224(1)224()(1)(1)x xxxxfxxx Since f(x)=0,when x=0,we complete th

    25、e following table.the only critical number is x=0.Interval (-,-1)(-1,0)(0,1)(1,+)f +fincreasing on(-,-1)increasing on(-1,0)decreasing on(0,1)decreasing on(1,+)So f is increasing on(-,-1)and(-1,0)and decreasing on(0,1)and(1,).F.Since f changes from positive to negative at 0,f(0)is a local maximum.G.W

    26、e have22224234(1)42(1)2124()(1)(1)xxxxxfxxxFigure 1 Interval f”+fCUCDCU(,1)(1,1)(1,)Thus,the curve is concave upward on the intervals(-,-1)and(1,)and concave downward on(-1,1).It has no point of infl-ection.We sketch the curve in Figure 1.Slant(Oblique)AsymptotesThe line y=ax+b is a slant asymptote

    27、for a function f(x)if and only if exist.()limandlim()xxf xaf xaxbxExample 2 Find the slant asymptotes,if any,of the function Solution The domain of f(x)is-x0 for all xc and f(x)c,then f(c)is the global maximum value of f.(b)If f(x)0 for all x0 for all xc,then f(c)is the global minimum value of f.Eco

    28、nomics().()Suppose c x is thetotal cost that a companyincurs in producing x units of a certaincommodity.The function c is called a cost functionc x is called the marginal cost3.3 Rates of Change in Natural and sciencesprdju:si kmditi ink:(1)().(1).Economists defined the marginal cost at aproduction

    29、level x to bec xc xwhich is the cost of producing one additionalunit of the commodityor the cost of producingthe xst unit0(1)()(1)()1()()lim()hsincec xc xc xc xc xhc xc xhprudkn 2()()1000050.01()50.02500(500)50.02(500)$15/Suppose a company has estimated that cost in dollarsof producing x itemisC xxx

    30、Then the marginal cost function isC xxThe marginal cost at the production level ofitemisCite501(501)(500)$15.01/(500)(501)(500)mThe actual cost of producing thest itemisCCitemNoticethat CCC4.7 Applications to Business and EconomicsInflection point()yC x()c xx()C xThe cost function The marginal costT

    31、he average cost function()()C xc xx()C x()C xFigure 1We have 2()()()xC xC xc xxNow c(x)=0 when xC(x)-C(x)=0 and this gives C(x)=C(x)/x=c(x)If the average cost is a minimum,then marginal cost=average costExample 1 A company estimates that the cost(in dollars)of producing x items is(a)Find the average

    32、 cost and marginal cost of producing 1000 items,2000 items,and 3000 items.2()260020.001.C xxx(b)At what production level will the average cost be lowest,and what is this minimum average cost?Solution (a)The average cost function isThe marginal cost function is()()/0.00122600/c xC xxxx()0.0022.C xxWe

    33、 use these expressions to fill in the following table.x C(x)c(x)C(x)100056005.604.002000106005.306.003000176005.878.00(b)To minimize the average cost we must have()()0.00220.00122600/26000001612.451612C xc xxxxxTo see that this production level actually gives a minimum,we note that c”(x)=5200/x3 0,s

    34、o c is concave upward on its entire domain.The minimum average cost is c(1612)=0.001(1612)+2+2600/1612=$5.22/itemLet p(x)be the price per unit that the company can charge if it sells x units.Then p is called the demand function(or price function)and we would expect it to be a decreasing function of

    35、x.If x units are sold and the price per unit is p(x),then the total revenue is R(x)=xp(x),and R(x)is called the revenue function.The derivative R(x)is called the marginal revenue function and is the rate of change of revenue with respect to the number of units sold.If x units are sold,then the total

    36、 profit is P(x)=R(x)-C(x),and P is called the profit function.The marginal profit function is P,the derivative of the profit function.In order to maximize profit we look for the critical numbers of P where the marginal profit is 0.But if P(x)=R(x)-C(x)=0,then R(x)=C(x).To ensure that this condition

    37、gives a maximum,we use the Second Derivative Test.Note that P”(x)=R”(x)-C”(x)0,when R”(x)C”(x).Thus,the profit will be a maximum when R(x)=C(x)and R”(x)C”(x)inu Example 2 Determine the production level that will maximize the profit for a company with cost and demand functions C(x)=3800+5x-x2/1000 an

    38、d p(x)=50-x/100Solution The revenue function is R(x)=xp(x)=50 x-x2/100,so the marginal revenue function is R(x)=50-x/50,and the marginal cost function is C(x)=5-x/500.Thus marginal revenue is equal to marginal cost when 50-x/50=5-x/500.Solving,we get x=2500.To check that this gives a maximum,we comp

    39、ute the second derivatives:R”(x)=-1/50 C”(x)=-1/500Thus,R”(x)0.Therefore,a production level of 2500 units will maximize profits.4.8 AntiderivativesDefinition A function F is called an antiderivative(or primitive function)of f(x)on an interval I if F(x)=f(x)for all x in I.For instance,let f(x)=x2.It

    40、is not difficult to see that the function F(x)=x3/3 is an antiderivative of f(x)since F(x)=x2=f(x).However,the function G(x)=100+x3/3 also satisfies G(x)=x2=f(x),so G(x)is an antiderivative of f(x).Indeed any function of the form H(x)=x3/3+c,where c is a constant,is an antiderivative of f(x).Theorem

    41、 If F is an antiderivative of f(x)on an interval I,then the most general antiderivative of f(x)on I is F(x)+cwhere c is an arbitrary constant.Going back to the function f(x)=x2,we see that the general antiderivative of f is x3/3+c.By assigning specific values to the constant c,we obtain a family of

    42、functions whose graphs are vertical translates of one another(see Figure 1).Figure 1Example 1 Find the most general antiderivative of each of the following functions.()()sin()()1/()(),1na f xxb f xxc f xxn Solution (a)Since(-cosx)=sinx,we get an antidirivative of sinx is-cosx.So the most general ant

    43、iderivative is-cosx+c.(b)Recall that We have the general antiderivative of 1/x is(ln)1/(0).xxx 12ln0()lnln()0 xcif xF xxcxcif x(c)We use the Power Rule to discover an antiderivative of xn.In fact,then1n 1()1nnxxn Thus,the general antiderivative of f(x)=xn is1()1nxF xcnThis is valid for since then f(

    44、x)=xn is defined on an interval.If n is negative(but ),it is valid on any interval that does not contain 0.0n 1n If F=f,G=g,we list some particular antiderivatives in the following table.Function Particular antiderivative222()()()(1)1/cossinsecsectan1/11/(1)nxkf xf xg xxnxexxxxxxx 1()()()/(1)lnsinco

    45、stansecarcsinarctannxkF xF xG xxnxexxxxxxExample 2 Solution The general antiderivative of f(x)is2Findif()20/(1)and(0)2.xffxexf()20arctanTo determinewe use the fact that(0)2:(0)120arctan02Thus,we have3,so the particular solution is()20arctan3xxf xexccffccf xex The Geometry of AntiderivativesExample 3

    46、 The graph of a function f is given in Figure 2(a).Make a rough sketch of an antiderivative F,given that F(0)=2.Solution The slope of y=F(x)is f(x).We start at the point(0,2)and draw F as an initially decreasing function since f(x)is negative when 0 x1.Notice that f(1)=f(3)=0,so F has horizontal tan

    47、gents when x=1 and x=3.Figure 2(a)(b)For 1x3,f(x)is negative and so F is decreasing on(3,).Since f(x)0 as x,the graph of F becomes flatter as x.Also notice that F”(x)=f(x)changes from positive to negative at x=2 and from negative to positive at x=4,so F has inflection points when x=2 and x=4.We use this information to sketch the graph of the antiderivative in Figure 2(b).

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:微积分英文课件 -003.ppt
    链接地址:https://www.163wenku.com/p-5209906.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库