微积分英文课件 -003.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分英文课件 -003.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分英文课件 _003 微积分 英文 课件
- 资源描述:
-
1、The best way to learn mathematics is to do mathematicsChapter 4 Applications of differentiation4.1 Maximum and minimum values4.2 The Mean value Theorem4.3 How Derivatives Affect the shape of a Graph4.4 Indeterminate Forms and L Hospitals Rule4.5 Summary of Curve Sketching4.6 Graphing with Calculus a
2、nd Calculators4.7 Optimization Problems4.8 Applications to business and Economics4.9 Newtons Method4.10 Antiderivatives A function f has an(or)at cif()for all xin D,where Dis the domain of f.absolute maxiumuglobal maximummaxThe number of()is called theof f on D.Similarly,f hasimum valueabsolute mini
3、manat cifD()()for all xefuinitioninmf cf xf cf cf xD and the number f(c)is called theof f on D.The maximum and minimum values of fare calledminmumvalueextreme valuethes of f.4.1 Maximum and minimum values A function f has amaximum(or)at cif()when x is near c.This meanthat()for all x in some openinte
4、rval containing c.SimilaLocalrelrly,f hasative maximumlocal minmuDefinaat c if()()when x is near cti nm.i of cf xf cf xf cf xExample:4118163)(234xxxxxfxxfcos)(2)(xxf3)(xxfExample:Example:Example:The maximum and minimum values of f are called the extreme values of f.cd(c,f(c)(d,f(d)int,maxmum()minimu
5、m(),.If f is continuouson a closederval a b then f attainsan absolutevalue f c and anabsolutevalue f d at somenumbers cThe ExtremeTheoand d in ambreWe have seen that some functions have extreme values,whereas others do not.The following theoremgives conditions under which a function is guaranteed to
6、 possess extreme values.Example)1,0(,xxyThis function has no maximum or minimum xoy1121,31,110,1)(xxxxxxfxoy1122机动 目录 上页 下页 返回 结束 ExampleThis function has no maximum or minimum Caution:nThe conditions cannot be weakened.Example22341()122223xxxf xxxxx Caution:The conditions is sufficient,but not nece
7、ssary.This function has minimum value f(-1)=-4This function has maximum value f(-4)nProblem:nThe Extreme Value Theorem says that a continuous function on a closed interval has a maximum value and minimum value.nBut it does not tell us how to find these extreme values.nWe start by looking for local e
8、xtreme values.If f has a local maximumor minmum at c,and if f(c)exiFermats Tsts,thenheof=e0r m(c)cProof:Without loss of generality,we consider local Maximum:(),()(),chcf chf c()()0,f chf chWe haveif 0,h()()0,f chf ch0,h if 0()()lim0hf chf ch()fc()fc()()()0.fcfcfc0()()lim0hf chf ch()fcThereforeBecaus
9、e exists,ThusnFermats Theorem does suggest that we should at least start looking for extreme values of f at the numbers c where or does not exist.nDefinition:nA critical number of a function f is a number c in the domain of f such that either or does not exist.0)(cf0)(cf)(cf)(cf nConclusion:If f has
10、 a local maximum or minimum at c,then c is a critical number of f.nTo find an absolute maximum or minimum of a continuous function on a closed interval,we note that either it is local in which case it occur at a critical number by the above conclusion nor it occurs at an endpoint of the interval.nTh
11、e Closed Interval Method n To find the absolute maximum and minimum values of a continous function f on a closed interval a,b:n1)Find the values of f at the critical numbers of f in(a,b).n2)Find the values of f at the endpoints of the interval.n3)The largest of the values from step 1)and step 2)is t
12、he absolute maximum value;the smallest of these values is the absolute minimum value.nExample Find the absolute maximum and minimum values of the functionnSolution:Since f is continuous on the given closed interval,we can use the Closed Interval Method:42113)(23xxxxf1233maximumminimum()(1)12Find the
13、 absoluteandvalueof the function f xxxx ,.解解答答23133(1)xyxx,10,13Thusthe critical numbers arexxand xTherefore,0y if130,xthat is,1,3x and dose not existywhen0,1.xor x解解答答x()fx134001/334/310232The values of at these critical numbers and at the endpoints of the interval areyComparing these numbers,we ge
14、t 3max(2)2yf3min(1)4.yf kmp 4.2 The Mean Value TheoremnRolle s Theorem:Let f be a function that satisfy the following three hypotheses:n1)f is continuous on the closed interval a,b.n2)f is differentiable on the open interval(a,b).n3)f(a)=f(b)nThen there is a number c in(a,b)such that 0)(cfbachaipisi
15、:z nProof Because f(x)is continuous on a,b,by the Extreme Value Theorem,we know that f(x)can take on its absolute maximum M and absolute minimum m there are two cases:nCase1:M=m means that f(x)is a constant function,then ,so any number c in(a,b)is OK!ab0)(xfn Case2:m0 for all x in(a,b),then f(x)is s
16、trictly increasing on a,b.(2)If f(x)0 for all x in(a,b),then f(x)is strictly decreasing on a,b.PROOF Choose any two points x1 and x2 in a,b with x10 for all x in I,then the graph of f(x)is concave upward on I.If f”(x)0 when x-1/3 and f”(x)0 when x-1/3.Intervalsign of f -+behavior of f(,1/3)1/3(1/3,)
17、the sign of and the behavior of f are recorded below.f-12-8-4 4812-12-8-44812 By Concavity Test,we get the following results:the graph of f(x)is concave downward on(-,-1/3)and is concave upward on(-1/3,+).So the point(-1/3,-88/27)is an inflection point.The graph of f is sketched in Figure 2.-12-8-4
18、4812-12-8-44812Figure 2The Second Derivative Test Suppose that f(x)is differentiable on an open interval containing c and that f(c)=0.1 If f”(c)0,then f(x)has a local minimum at c.Example 6 Discuss the curve y=f(x)=x4-4x3 with respect to local maxima and minima.Solution 3222()4124(3)()122412(2)fxxxx
19、xfxxxx xTo find the critical numbers we set f(x)=0 and obtain x=0 and x=3.To use the Second Derivative Test we evaluate f”at these critical numbers:f”(0)=0 f”(3)=360 Since f(3)=0 and f”(3)0,f(3)=-27 is a local minimum.Since f”(0)=0,the Second Derivative Test gives no information about the critical n
20、umber 0.But since f(x)0 for x0 and also for 0 x3,the First Derivative Test tells us that f does not have a local maximum or minimum at 0.Example 7 Sketch the graph of the function f(x)=x2/3(6-x)1/3.Solution 1/32/34/35/348()()(6)(6)Since()0 when4 and()does not exist when 0 or 6,the critical numbers a
21、re 0,4,and 6.xfxfxxxxxfxxfxxx Interval (-,0)(0,4)(4,6)(6,+)f +fdecreasing on(-,0)increasing on(0,4)decreasing on(4,6)decreasing on(6,+)By the First derivative Test,f(0)=0 is a local minimum and f(4)=25/3 is a local maximum.The sign of f does not change at 6,so there is no minimum or maximum there.Lo
22、oking at the expression for f”(x),we have f”(x)0 for x0 and for 0 x0 for x6.Thus f is concave downward on(-,0)and(0,6)and concave upward on(6,+),and the only inflection point is(6,0).The graph is sketched in Figure 4.Figure 44.5 Summary of Curve sketchingGuidelines for Sketching a CurveA.Domain E.In
23、tervals of Increase or DecreaseB.Intercepts F.Local Extreme ValuesC.Symmetry G.Concavity and Points of InflectionD.Asymptotes H.Sketch the CurveExample 1 Use the guidelines to sketch the curve222.1xyxExample 1 Use the guidelines to sketch the curve222.1xyxA.The domain isB.The x-and y-intercepts are
展开阅读全文