微积分第五章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分第五章课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 第五 课件
- 资源描述:
-
1、Chapter 5 Integrals5.1 Areas and Distance5.2 The Definite Integral5.3 The Fundamental Theorem of Calculus5.4 Indefinite Integrals and the Net Change Theorem5.5 The Substitution Rule5.6 The Logarithm Defined as an Integral5.1 Areas and Distances The area problem 1.Areas of curved trapezoidSuppose the
2、 curved trapezoid is bounded by0),0)()(yxfxfyandbxax,Find the area of A.?A)(xfy Area of rectangleahhaahbArea of trapezoid)(2bah1xix1ixxabyoMethod:1)Partition:bxxxxxann1210,1iiixxUse the linesixx to divide A into small curved trapezoid;2)Approximation:,1iixxBase:)(ifHeight:We can approximatebyiA)()(1
3、iiiiiixxxxfA),2,1,niiSmall rectangle:3)Sum:niiAA1niiixf1)(4)Limit:Let,max1inixthen the area of the niiAA10limniiixf10)(limxabyo1xix1ixicurved trapezoid is:Riemann sum2.Distance,)(21TTCtvvand,0)(tvFind the total distance s.Method:1)Partition:,1iiitt1,isiitt2)Approximation:1use()to replace()over,iiivv
4、 tttWe get iiitvs)(),2,1(nisi),2,1(niSupposeSuppose the distance over212101TtttttTnn3)Sum:iniitvs1)(4)Limit:iniitvs10)(lim)max(1initCommon characteristic of the above problems is:1)The process is the same:“Partition,Approximation,Sum,Limit”2)The limit forms are the same:Both are the limits of Rieman
5、n sumsRiemann sum5.2 The definition of integralabxo The definition of integralSuppose()isdefinedon,.f xa bFor anypartition of ,a b,210bxxxxan1let,iiixxx,1iiixxi1aslongasmax0,ii nx iniixf1)(always tends to I,We say that I is the integral of)(xfover,a b1xix1ixbaxxfd)(That is baxxfd)(iniixf10)(limThen
6、we say that f(x)is integrable on a,b .denote it byniiixf1)(iniixf10)(limbaxxfd)(:where:integral signf(x):integranda :lower limit of integrationb :upper limit of integration The procedure of calculating an integral is called integration.Caution:The definite integral is a number;it does not depend on
7、x.In fact,we could use any letter in place of x without changing the value of the integral:badxxf)(bababadrrfdttfdxxf)()()(where x is a dummy variable.Geometric interpretation:Axxfxfbad)(,0)(:the area of the regionbaxxfxfd)(,0)(:the negative of the area of the regionabyx1A2A3A4A5A54321d)(AAAAAxxfba:
8、the algebraic sum of the oriented area,or the net area.ATheorem1.()is continuous on ,f xa bTheorem2.()is bounded on ,f xa band have only finite discontinuities on a,b The sufficient condition of integrability:)(xfis integrable on,ba)(xfis integrable on,bao1 xyniExample 1.Use the definition to evalua
9、te.d102xxSolution:Useniix),1,0(ninix1,niiWe choose),2,1(ni2xy 2then()iiiifxxto divide 0,1 into n subintervals of equal width.o1 xyniiinixf)(1niin1231)12)(1(6113nnnn)12)(11(61nniniixxx120102limdnlim31)12)(11(61nn2xy Example 2.Use the definition to evaluate.d31xexSolution:Useniix21),1,0(ninix2,12niiWe
10、 choose),2,1(nithen()iiiifxexto divide 1,3 into n subintervals of equal width.iinixf)(1ninien1/212ninixenxe1/210312limdnlimee 312/2/)2(/)23(nnnnneeen121lim)2(ppppnnnnnipn1lim1niiixninnin111lim)1(121lim)2(ppppnnnSolution:ninnin111lim)1(nninin11lim1iixxxd110 x01ni 1niUse the integral to denote the fol
11、lowing limits:xxpd10dxxRR022dxxRR022241R22xRyROUse the geometric meaning to evaluate:The Midpoint Rule1111()()()()whereandmidpoint of,2nbinaiiiiiif x dxf xxx f xf xbaxnxxxxx Properties of the definite integral When we defined the definite integral .we implicitly assumed that ab.Notice that if we rev
12、erse a and b,then change (b-a)/n from to (a-b)/n.Thereforebadxxf)(abbadxxfdxxf)()(If,then0 and soabx 0)(aadxxfProperties of the integral)(d.1abcxcbaxxfkxxfkbabad)(d)(.2(k is a constant)bababaxxgxxfxxgxfd)(d)(d)()(.3Proof:01The left sidelim()()niiiifgx0011lim()lim()the right sidenniiiiiifxgx(c is a c
13、onstant)Example:Use the properties of integrals to evaluate 102)34(dxx10210102101023434)34(:dxxdxdxxdxdxxSolution314410210dxxdxthatknowWebccabaxxfxxfxxfd)(d)(d)(.410880100)(12)(17)(:dxxffinddxxfanddxxfthatGivenExample5.()0,()0.6.()(),()().7.(),()()()babbaabaIf f xforaxb thenf x dxIf f xg x for axb t
14、henf x dxg x dxIf mf xM foraxb thenm baf x dxM baComparison Properties of the integral:The next theorem is called Mean Value Theorem for Definite Integrals.Its geometric interpretation is that,for a continuous positive f(x)on a,b,there is a number c in a,b such that the rectangle with base a,b and h
15、eight f(c)has the same area as the region under the graph of f(x)from a to b.oabxycf(x)Theorem If f(x)is continuous on a,b,then there exists at least a number c in(a,b)such that baabcfdxxf).)()(The number is called the average value of f(x)on a,b.Proof If f(x)is a constant function,the result is tru
16、e.Next we assume that f(x)is not a constant function.Since f(x)is continuous on a,b,f(x)takes on the minimum and the maximum values on a,b.Let f(u)=m and f(v)=M be the minimum and the maximum values of f(x)on a,b,respectively.Then m f(x)M for some x in a,b because f(x)is not constant.Therefore,we ha
17、ve It follows that ()/()baf x dx ba()bbbaaamdxf x dxMdx()()()bam baf x dxM ba The preceding inequalities indicate that the number is between m=f(u)and M=f(v).Thus the Intermediate Value Theorem leads that there is a number c between u and v such that Multiplying the both sides by b-a gives the concl
18、usion of the theorem.()/()baf x dx ba()()baf x dxf cba5.3 The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus The fundamental Theorem of Calculus is appropriately named because it establishes a connection between the two branches to Calculus:differential calculus and integral cal
19、culus.Differential calculus arose from the tangent problem,whereas integral calculus arose from a seemingly unrelated problem,the area problem.The Fundamental Theorem of Calculus gives the precise relationship between the derivative and the integral.Newtons teacher at Cambridge,Issac Barrow discover
展开阅读全文