书签 分享 收藏 举报 版权申诉 / 78
上传文档赚钱

类型微积分第五章课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5209565
  • 上传时间:2023-02-17
  • 格式:PPT
  • 页数:78
  • 大小:1.76MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《微积分第五章课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    微积分 第五 课件
    资源描述:

    1、Chapter 5 Integrals5.1 Areas and Distance5.2 The Definite Integral5.3 The Fundamental Theorem of Calculus5.4 Indefinite Integrals and the Net Change Theorem5.5 The Substitution Rule5.6 The Logarithm Defined as an Integral5.1 Areas and Distances The area problem 1.Areas of curved trapezoidSuppose the

    2、 curved trapezoid is bounded by0),0)()(yxfxfyandbxax,Find the area of A.?A)(xfy Area of rectangleahhaahbArea of trapezoid)(2bah1xix1ixxabyoMethod:1)Partition:bxxxxxann1210,1iiixxUse the linesixx to divide A into small curved trapezoid;2)Approximation:,1iixxBase:)(ifHeight:We can approximatebyiA)()(1

    3、iiiiiixxxxfA),2,1,niiSmall rectangle:3)Sum:niiAA1niiixf1)(4)Limit:Let,max1inixthen the area of the niiAA10limniiixf10)(limxabyo1xix1ixicurved trapezoid is:Riemann sum2.Distance,)(21TTCtvvand,0)(tvFind the total distance s.Method:1)Partition:,1iiitt1,isiitt2)Approximation:1use()to replace()over,iiivv

    4、 tttWe get iiitvs)(),2,1(nisi),2,1(niSupposeSuppose the distance over212101TtttttTnn3)Sum:iniitvs1)(4)Limit:iniitvs10)(lim)max(1initCommon characteristic of the above problems is:1)The process is the same:“Partition,Approximation,Sum,Limit”2)The limit forms are the same:Both are the limits of Rieman

    5、n sumsRiemann sum5.2 The definition of integralabxo The definition of integralSuppose()isdefinedon,.f xa bFor anypartition of ,a b,210bxxxxan1let,iiixxx,1iiixxi1aslongasmax0,ii nx iniixf1)(always tends to I,We say that I is the integral of)(xfover,a b1xix1ixbaxxfd)(That is baxxfd)(iniixf10)(limThen

    6、we say that f(x)is integrable on a,b .denote it byniiixf1)(iniixf10)(limbaxxfd)(:where:integral signf(x):integranda :lower limit of integrationb :upper limit of integration The procedure of calculating an integral is called integration.Caution:The definite integral is a number;it does not depend on

    7、x.In fact,we could use any letter in place of x without changing the value of the integral:badxxf)(bababadrrfdttfdxxf)()()(where x is a dummy variable.Geometric interpretation:Axxfxfbad)(,0)(:the area of the regionbaxxfxfd)(,0)(:the negative of the area of the regionabyx1A2A3A4A5A54321d)(AAAAAxxfba:

    8、the algebraic sum of the oriented area,or the net area.ATheorem1.()is continuous on ,f xa bTheorem2.()is bounded on ,f xa band have only finite discontinuities on a,b The sufficient condition of integrability:)(xfis integrable on,ba)(xfis integrable on,bao1 xyniExample 1.Use the definition to evalua

    9、te.d102xxSolution:Useniix),1,0(ninix1,niiWe choose),2,1(ni2xy 2then()iiiifxxto divide 0,1 into n subintervals of equal width.o1 xyniiinixf)(1niin1231)12)(1(6113nnnn)12)(11(61nniniixxx120102limdnlim31)12)(11(61nn2xy Example 2.Use the definition to evaluate.d31xexSolution:Useniix21),1,0(ninix2,12niiWe

    10、 choose),2,1(nithen()iiiifxexto divide 1,3 into n subintervals of equal width.iinixf)(1ninien1/212ninixenxe1/210312limdnlimee 312/2/)2(/)23(nnnnneeen121lim)2(ppppnnnnnipn1lim1niiixninnin111lim)1(121lim)2(ppppnnnSolution:ninnin111lim)1(nninin11lim1iixxxd110 x01ni 1niUse the integral to denote the fol

    11、lowing limits:xxpd10dxxRR022dxxRR022241R22xRyROUse the geometric meaning to evaluate:The Midpoint Rule1111()()()()whereandmidpoint of,2nbinaiiiiiif x dxf xxx f xf xbaxnxxxxx Properties of the definite integral When we defined the definite integral .we implicitly assumed that ab.Notice that if we rev

    12、erse a and b,then change (b-a)/n from to (a-b)/n.Thereforebadxxf)(abbadxxfdxxf)()(If,then0 and soabx 0)(aadxxfProperties of the integral)(d.1abcxcbaxxfkxxfkbabad)(d)(.2(k is a constant)bababaxxgxxfxxgxfd)(d)(d)()(.3Proof:01The left sidelim()()niiiifgx0011lim()lim()the right sidenniiiiiifxgx(c is a c

    13、onstant)Example:Use the properties of integrals to evaluate 102)34(dxx10210102101023434)34(:dxxdxdxxdxdxxSolution314410210dxxdxthatknowWebccabaxxfxxfxxfd)(d)(d)(.410880100)(12)(17)(:dxxffinddxxfanddxxfthatGivenExample5.()0,()0.6.()(),()().7.(),()()()babbaabaIf f xforaxb thenf x dxIf f xg x for axb t

    14、henf x dxg x dxIf mf xM foraxb thenm baf x dxM baComparison Properties of the integral:The next theorem is called Mean Value Theorem for Definite Integrals.Its geometric interpretation is that,for a continuous positive f(x)on a,b,there is a number c in a,b such that the rectangle with base a,b and h

    15、eight f(c)has the same area as the region under the graph of f(x)from a to b.oabxycf(x)Theorem If f(x)is continuous on a,b,then there exists at least a number c in(a,b)such that baabcfdxxf).)()(The number is called the average value of f(x)on a,b.Proof If f(x)is a constant function,the result is tru

    16、e.Next we assume that f(x)is not a constant function.Since f(x)is continuous on a,b,f(x)takes on the minimum and the maximum values on a,b.Let f(u)=m and f(v)=M be the minimum and the maximum values of f(x)on a,b,respectively.Then m f(x)M for some x in a,b because f(x)is not constant.Therefore,we ha

    17、ve It follows that ()/()baf x dx ba()bbbaaamdxf x dxMdx()()()bam baf x dxM ba The preceding inequalities indicate that the number is between m=f(u)and M=f(v).Thus the Intermediate Value Theorem leads that there is a number c between u and v such that Multiplying the both sides by b-a gives the concl

    18、usion of the theorem.()/()baf x dx ba()()baf x dxf cba5.3 The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus The fundamental Theorem of Calculus is appropriately named because it establishes a connection between the two branches to Calculus:differential calculus and integral cal

    19、culus.Differential calculus arose from the tangent problem,whereas integral calculus arose from a seemingly unrelated problem,the area problem.The Fundamental Theorem of Calculus gives the precise relationship between the derivative and the integral.Newtons teacher at Cambridge,Issac Barrow discover

    20、ed that the two problem are actually closely related.In fact,he realized that differentiation and integration are inverse processes.It was Newton and Leibniz who exploited this precise relationship and use it to develop calculus into a systematic mathematical method.In particular,they saw that the F

    21、undamental Theorem enabled them to compute areas and integrals very easily without having to compute them as limits of sums.The first part of the Fundamental Theorem deals with functions defined by an equation of the form where f is a continuous function on a,b and x varies between a and b.Observe t

    22、hat g depends only on x,which appears as the variable upper limit in the integral.If x is a fixed number,then the integral is a definite number.If we then let x vary,the number also varies and defines a function of x by g(x).xadttfxg)()(baxf(t)(xfy xbaoy)(xxhxThe Fundamental Theorem of Calculus,Part

    23、 IIf(),thenf xC a bxattfxd)()(Proof:,bahxxthenhxhx)()(h1xahxattfttfd)(d)(hxxttfhd)(1)(f)(hxxhxhxh)()(lim0)(lim0fh)(xf)(xiscontinuous on ,anddifferentiable on(,)and()()a ba bxf x,)(baCxf2021)(1)(:1xxgthendttxgExamplex)2/sin()()2/sin()(2202xxSthendttxSExamplex.sec341xtdtdxdFindExampleuxtdtdxdtdtdxdthe

    24、nxusetSolution114secsec:43414)sec(sec)()sec(xxdxduuRuleChainthebydxdutdtdudu?)(?)(?)()()()()(xhxgbxgxgadttfdxddttfdxddttfdxdThe Fundamental Theorem of Calculus,Part 2thenxffunctioncontinuousaoftiveantiderivaanisxFSuppose,)()()()(d)(aFbFxxfbaProof:According to part 1,)(d)(xfoftiveantiderivaanisxxfxas

    25、oCxxfxFxad)()(Set,xaWe get(),CF aso)()(d)(aFxFxxfxaLet,xbwe have)()(d)(aFbFxxfbadenotebabaxFxF)()(315dxeExamplexeeex331|1024dxxExample313|103x636xdxExample3ln6lnln|63xbxdxExample0cos7bbxbsin0sinsinsin|011211211()21Butispositive!|dxxxx Why?Summary:We end this section by bringing together the two part

    26、s of the Fundamental Theorem.,1)()(),()().2)()()(),xabaSuppose f is continuous ona bwe haveIf g xf t dt then g xf xf x dxF bF awhere F is an antiderivativeof f that is Ff The Fundamental Theorem of Calculus5.4 Indefinite Integrals and the Net Change Theorem Indefinite Integrals and the Net Change Th

    27、eorem An indefinite integral of f(x)represent an entirely family of functions whose derivative is f(x)and is denoted by Suppose that F(x)is an antiderivative of f(x),then according to the theorem in 4.2,we know that any antiderivative G(x)of f(x)can be written as G(x)=F(x)+Cdxxf)(CxFdxxf)()(Then:Cau

    28、tion:1)You should distinguish carefully between definite and indefinite integrals.A definite integral is a number,whereas an indefinite integral is a function(a family of functions).2)The connection is the fundamental theorem:babadxxfdxxf)()(xdd)1(xxfd)()(xfTable of Indefinite integrals From the abo

    29、ve definition,we known that:dxxfd)(xxfd)(orCxd)2()(xF)(xForCd)(xF)(xFxkd)1(k is a constant)Cxk xx d)2(Cx111xxd)3(Cx ln0 x)1()ln()ln(xxx121d)4(xxCx arctanxxdcos)6(Cx sinxx2cosd)8(xxdsec2Cx tanorCx cotarc21d)5(xxCx arcsinorCx cosarcxxdsin)7(Cx cosxx2sind)9(xxdcsc2Cx cotxxxdtansec)10(Cx secxxxdcotcsc)1

    30、1(Cxcscxexd)12(Cexxaxd)13(Caaxln2shxxeexCx chxxdch)15(Cx shxxdsh)14(2chxxeexExample 1:.d3xxxSulotion:=xxd34134Cx313Example 2:.dcossin22xxx Solution:=xxdsin21Cx cos21134xCThe properties of Indefinite Integralsxxfkd)(.1xxgxfd)()(.2Corollary:If,)()(1xfkxfiniithenxxfkxxfiniid)(d)(1xxfkd)(xxgxxfd)(d)()0(

    31、kExample 3:.d)5(2xexx Solution:=xexxd)25)2()2ln()2(eex2ln25xCexx2ln512ln2CExample 4:.dtan2xxSolution:=xxd)1(sec2xxxddsec2Cxx tanExample 5:.d)1(122xxxxxSolution:=xxxxxd)1()1(22xxd112xxd1xarctanCx lnExample:.d124xxx Solution:=xxxd11)1(24xxxxd11)1)(1(222221dd)1(xxxxCxxxarctan313Application:The Net Chan

    32、ge Theorem The integral of a rate of change is the net change:)()()(aFbFdxxfba)()()(aFbFdxxFba()()()()()()()()()()()()total distance traveledbabbaabbaabaC x dxC bC av t dts t dts bs aa t dtv t dtv bv av t dt Example 6 A particle moves along a line so that its velocity at time t is 1)Find the displac

    33、ement of the particle during the time period 2)Find the distance traveled during the time period.6)(2tttv41 t29)()1()4()141dttvss17.10661)()241dttvSolution:5.5 The Substitution RuleThe Substitution Rulecxcuuduxxddxxxdxxu2sin21sin21cos21)2(2cos2122cos212cos2Example:)2(2xddx ceceduedxedxxedxxexuuxuxxx

    34、2222221212121)2(212)(22xdxdx The Substitution Rule:CxFCuFduufxdxfdxxxfxu)()()()()()()()(fF Suppose()11(32)232dxxCx 23ln21dxx231Exampe 1 duuxu12123Cu ln21Example 2 dxxx212211(1)2x dx 3221(1)3xC 2211(1)2xxdx2112uxudu cu 2331Example 3dxxex332()xedx32(3)3xedxCex332323uxue du23uecExample 4)ln31(xxdxxxdln

    35、31)ln31(31.|ln31|ln31Cx dxxxcossinxdxcoscos1Cx cosln xdxtanCxsecln xdxcotCxcscln xdxtanExample 5 ln secxC221d xax dxaxa22111 axdaxa21111arctanxCaa(1).dxxa221(2).arcsin xCa dxaxa2111 axdax211dxax221(3).Caxaxlna 211112dxaxaxa1()()2d xad xaaxaxaEx6322xxdx22)2()1(xdx22)2()1()1(xxd.21arctan21CxEx7dxxx249

    36、1dxx2491dxxx24922)2(3)2(21xxd2249)49(81xxd32arcsin21x.49412Cx Definite Integrals The Substitution Rule for Definite IntegralsIf is continuous on a,b and f is continuous on the range of u=g(x),theng)()()()()(bgagbaduufdxxgxgf)()(|)()()(agFbgFxgFdxxgxgfbaba)()(|)()()()()()(agFbgFuFduufbgagbgagProof:Su

    37、ppose F be an antiderivative of f.Then F(g(x)is an antiderivative of)()(xgxgfEx1.Evaluate).0(d022axxaaSolution:Let,sintax then,dcosdttax;0,0txAs.,2taxasThe above integral=2attad)2cos1(2202)2sin21(22tta0242a20ttdcos222xayxoyaSandEx2.Evaluate.d12240 xxxSolution:Let,12 xtthen,dd,212ttxtx,0 xAs,4xas.3tT

    38、he above integral=ttttd231212ttd)3(21312)331(213tt 13322;1tand Ex3.,)(aaCxfSupposeProof:(1)If,)()(xfxfaaaxxfxxfthen0d)(2d)(xxfaad)(2)If,)()(xfxf0d)(aaxxfthenxxfad)(0 xxfad)(0ttfad)(0 xxfad)(0 xxfxfad)()(0,d)(20 xxfa)()(xfxfastxLet,0)()(xfxfasQuestion:?)(1)(226dxxfxxfSuppose?)()1/(tan)(If1142dxxfxxxx

    39、f5.6 The Logarithm Defined as an Integral The Logarithm Defined as an Integral Our treatment of exponential and logarithmic functions until now has relied on our intuition,which is based on numerical and visual evidence.Here we use the Fundamental Theorem of Calculus to give an alternative treatment that provides a surer footing for these functions.01ln1xdttxxDefinition The natural logarithmic function is the function defined byBased on the above definition of natural logarithmic function,we will deduce all properties of logarithm functions。As far as the details,we left to you as an exercise.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:微积分第五章课件.ppt
    链接地址:https://www.163wenku.com/p-5209565.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库