晶体结构的对称性从点阵到空间群课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《晶体结构的对称性从点阵到空间群课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体结构 对称性 点阵 空间 课件
- 资源描述:
-
1、主要内容主要内容 v晶体的平移对称性:三维点阵和晶体的平移对称性:三维点阵和晶胞v晶体学中的对称操作元素晶体学中的对称操作元素:(旋转轴、倒反中心、镜面、反轴、映轴、螺旋轴和滑移面)v晶体学点群晶体学点群,晶系和点阵型式晶系和点阵型式v空间群及其应用:空间群及其应用:空间群符号,等效点系,空间群符号,等效点系,分数坐标,不对称单位分数坐标,不对称单位晶体性质 晶体是原子晶体是原子(包括离子,原子团包括离子,原子团)在在三维空间中三维空间中周期性排列形成周期性排列形成的固体物质。晶体有以下的共同的固体物质。晶体有以下的共同性质:性质:1.均匀性均匀性;2.各向异性各向异性;3.自范性自范性;4.
2、对称性对称性;5.5.稳定性。稳定性。对称性的不同含义v物体的组成部分之间或不同物体之间特征的对应、等价或相等的关系。(希腊字根=类似尺寸的。)v由于平衡或和谐的排列所显示的美。v形态和(在中分平面、中心或一个轴两侧的)组元形态和(在中分平面、中心或一个轴两侧的)组元的排列构型的精确对应。的排列构型的精确对应。晶格晶体点阵与晶体对称性晶体点阵与晶体对称性v在每个重复周期都选取一个代表点,就可以用三维空间点阵来描述晶体的平移对称性。而平移对称性是晶体最为基本的对称性平移对称性是晶体最为基本的对称性。整个点阵沿平移矢量 t=ua+vb+wc (u、v,w为任意整数)平移,得到的新空间点阵与平移前一
3、样,称沿矢量沿矢量t t的平移为的平移为平移平移对称操作对称操作。晶体点阵与晶体对称性晶体点阵与晶体对称性v点阵是一组无限的点,连接其中任意两点可以得到一个矢点阵是一组无限的点,连接其中任意两点可以得到一个矢量,点阵按此矢量平移后都能复原。三维空间点阵是在三量,点阵按此矢量平移后都能复原。三维空间点阵是在三维空间中点的无限阵列,其中所有的点都有相同的环境。维空间中点的无限阵列,其中所有的点都有相同的环境。选任意一个阵点作为原点,三个不共面的矢量选任意一个阵点作为原点,三个不共面的矢量a,b和和c作作为坐标轴的基矢,这三个矢量得以确定一个平行六面体如为坐标轴的基矢,这三个矢量得以确定一个平行六面
4、体如下:下:此平行六面体称为晶胞。此平行六面体称为晶胞。晶胞晶胞v如上确定的六面体称为晶胞,由矢量如上确定的六面体称为晶胞,由矢量a,b和和c确定的方向称确定的方向称为晶体学的晶轴为晶体学的晶轴 X,Y,Z。v如果晶胞中只包含一个阵点,则这种晶胞被称为初基的如果晶胞中只包含一个阵点,则这种晶胞被称为初基的 (primitive)。v晶胞的大小和形状可以用晶胞参数来表示,即用晶胞的三个晶胞的大小和形状可以用晶胞参数来表示,即用晶胞的三个边的长度边的长度a,b,c三个边之间的夹角三个边之间的夹角a a,b b,g g表示。表示。v晶胞包含描述晶体结构所需的最基本结构信息。如果知道了晶胞包含描述晶体
5、结构所需的最基本结构信息。如果知道了晶胞中全部原子的坐标,就有了晶体结构的全部信息。晶胞中全部原子的坐标,就有了晶体结构的全部信息。一般写作:晶体结构晶体结构=点阵点阵+结构基元结构基元;但准确的描述应为:;但准确的描述应为:晶体结构晶体结构=点阵点阵*结构基元结构基元;晶体结构;晶体结构=结构基元结构基元点阵点阵晶胞的选取晶胞的选取v晶胞的选取可以有多种方式,但在实际确定晶胞时,要尽晶胞的选取可以有多种方式,但在实际确定晶胞时,要尽可能选取对称性高的初基单胞,还要兼顾尽可能反映晶体可能选取对称性高的初基单胞,还要兼顾尽可能反映晶体内部结构的对称性,所以有时使用对称性较高的非初基胞内部结构的对
6、称性,所以有时使用对称性较高的非初基胞-惯用晶胞。惯用晶胞。(1 1)符合整个空间点阵的对称性。)符合整个空间点阵的对称性。(2 2)晶轴之间相交成的直角最多。)晶轴之间相交成的直角最多。(3 3)体积最小。)体积最小。(4 4)晶轴交角不为直角时,选最短的晶轴,且交角接近直角。)晶轴交角不为直角时,选最短的晶轴,且交角接近直角。点阵、结构点阵、结构和单胞和单胞1.1.点阵:点阵:晶体的周期性,忽略填充空间的实际结构晶体的周期性,忽略填充空间的实际结构(分子分子)。2.2.点阵矢量:点阵矢量:由点阵矢量移动晶体到一个等效位置的平移。由点阵矢量移动晶体到一个等效位置的平移。3.3.初基点阵矢量:
7、初基点阵矢量:可选择的最小点阵矢量。可选择的最小点阵矢量。4.4.初基晶胞初基晶胞:初基点阵矢量定义的平行六面体,仅包含一个初基点阵矢量定义的平行六面体,仅包含一个点阵点。点阵点。5.5.晶体结构:晶体结构:原子在晶体中的周期性排列。原子在晶体中的周期性排列。它可以通过在它可以通过在每点阵点安放一个称为基元(或型主)的一组原子来描述。每点阵点安放一个称为基元(或型主)的一组原子来描述。不要混淆点阵点和原子不要混淆点阵点和原子1.1.阵点是在空间中无穷小的点。阵点是在空间中无穷小的点。2.2.原子是实在物体。原子是实在物体。3.3.阵点不必处于原子中心。阵点不必处于原子中心。晶体结构晶体结构=结
8、构基元结构基元点阵点阵晶体结构是在每晶体结构是在每个点阵点上安放个点阵点上安放一个结构基元。一个结构基元。三维晶胞的原子计数v在晶胞不同位置的原子由不同数目的晶胞分享:1.1.顶角原子顶角原子 1/81/82.2.棱上原子棱上原子 1/41/43.3.面上原子面上原子 1/21/24.4.晶胞内部晶胞内部 1 1石墨晶体结构三维点阵和晶胞使用矢量a、b和c 指定点阵:在所有两个点阵点之间的矢量(r)满足关系,r=ua+vb+wc,,其中u、v和w是整数。指定晶体中的任意点:r=(u+x)a+(v+y)b+(w+z)c,其中u,v,w为整数r=(ua+vb+wc)+(xa+yb+zc)x,y,z
9、是在晶胞之内指定一个位置的分数座标分数座标。x,y,z用晶胞边长的分数表示,在0-1之间变化。晶胞原点的分数坐标总是0,0,0。用相同分数座标x、y和z指定的所有位置都对称等价。(由于晶体的三维周期性,在分数坐标上加减任意整数,仍然表示平移对称的等价位置。)晶体学中的对称操作元素晶体学中的对称操作元素 v分子和晶体都是对称图像,是由若干个相等的部分或单元按分子和晶体都是对称图像,是由若干个相等的部分或单元按照一定的方式组成的。对称图像是一个能经过不改变其中任照一定的方式组成的。对称图像是一个能经过不改变其中任何两点间距离的操作后复原的图像。这样的操作称为何两点间距离的操作后复原的图像。这样的操
10、作称为对称操对称操作。作。v在操作中保持空间中至少一个点不动的对称操作称为在操作中保持空间中至少一个点不动的对称操作称为点对称点对称操作操作,如简单旋转和镜像转动,如简单旋转和镜像转动(反映和倒反反映和倒反)是是点式操作点式操作;使使空间中所有点都运动的对称操作称为空间中所有点都运动的对称操作称为非点式操作非点式操作,如平移,如平移,螺旋转动和滑移反映。螺旋转动和滑移反映。对称操作和对称元素对称操作和对称元素v对称操作对称操作:一个物体运动或变换,使得变换后的物体与变一个物体运动或变换,使得变换后的物体与变换前不可换前不可区分(复原,重合)。区分(复原,重合)。v对称元素对称元素:在对称操作中
11、保持不变的几何图型:点、轴或面。:在对称操作中保持不变的几何图型:点、轴或面。v点群点群:保保留留一点不变一点不变的的对称对称操作群。操作群。v空间空间群群:为扩展:为扩展到三维物到三维物体例如晶体体例如晶体的对称的对称操作群,由点群操作群,由点群对称操作和平移对称操作组合而成;对称操作和平移对称操作组合而成;由由 32 晶体学点群与晶体学点群与 14个个Bravais 点阵组合而成;空间群是一个单胞(包含单胞带点阵组合而成;空间群是一个单胞(包含单胞带心)的平移对称操作;反射、旋转和旋转反演等点群对称性心)的平移对称操作;反射、旋转和旋转反演等点群对称性操作、以及螺旋轴和滑移面对称性操作的组
12、合。操作、以及螺旋轴和滑移面对称性操作的组合。全同操作v(1)全同操作全同操作(Identity),符号表示为,符号表示为1(E),对对应于物体不动的对称操作,对应的变换矩阵应于物体不动的对称操作,对应的变换矩阵为单位矩阵。为单位矩阵。矩阵表示 注意:符号表示为国际符号也称为赫尔曼符号表示为国际符号也称为赫尔曼-毛古因毛古因Hermann-Hermann-MauguinMauguin符号,括号内为熊夫利斯符号,括号内为熊夫利斯S Schnflieschnflies 符号。符号。旋转轴v(2)旋转轴旋转轴(旋转轴旋转轴):绕某轴反时针旋转绕某轴反时针旋转q q=360/n度,度,n称称为旋转轴的
13、次数为旋转轴的次数(或重数或重数),符号为符号为n(Cn)。其变换矩阵为:。其变换矩阵为:cossinsincosqqqq00001旋转矩阵aaaaaaaasincos)sincoscos(sin)sin(sincos)sinsincos(cos)cos(sincos11211211xyrryyxrrxryrx1000cossin0sincos)(1000cossin0sincossincossincos,111222112112zRzyxzyxxyyyxx晶体中的旋转轴限制练习题:1.平移对称性对旋转轴的次数n有很大的限制,证明在晶体学中只能出n=1,2,3,4,6的旋转轴。2.写出沿三个坐
14、标轴X,Y和Z的4次旋转轴的表示矩阵。矩阵乘法zyxzyx1000100012次旋转矩阵倒反中心(Inversion center)倒反中心:倒反中心:也称为也称为反演中心反演中心或对称中心或对称中心(Center of symmetry),它的操作是通过一个点的倒反它的操作是通过一个点的倒反(反演反演),使空间点的每一个位置由坐标为使空间点的每一个位置由坐标为(x、y,z)变换到变换到(-x,-y,-z)。符号为。符号为1(i)1(i),变换矩阵为,变换矩阵为反映面-镜面v反映面,反映面,也称镜面也称镜面,反映操作是从空间某一点向反映面引垂线,反映操作是从空间某一点向反映面引垂线,并延长该垂
15、线到反映面的另一侧,在延长线上取一点,使其到反并延长该垂线到反映面的另一侧,在延长线上取一点,使其到反映面的距离等于原来点到反映面的距离。符号为映面的距离等于原来点到反映面的距离。符号为m(s s)。v为了表示反映面的方向,可以在其符号后面标以该面的法线。如为了表示反映面的方向,可以在其符号后面标以该面的法线。如法线为法线为010的反映面,可记为的反映面,可记为m 010。m 010(x、y,z)=(x,-y,z)zyx100010001zyx镜面类型和矩阵表示v关于关于对称平面对称平面(或镜面或镜面)的反的反映映,可以可以平行平行于于(vertical,v)或或 垂垂直于直于(horizon
16、tal,s sh)主轴。主轴。v在二个在二个C2轴之间角平分轴之间角平分线线的一个垂直平面叫的一个垂直平面叫作双面镜面作双面镜面,d(dihedral plane)。)。通过yz面的反映。旋转倒反轴-反轴v旋转倒反轴,简称反轴旋转倒反轴,简称反轴 (Axis of inversion,Rotoinversion axis),其对称操作是先进行旋转操其对称操作是先进行旋转操作作(n)后立刻再进行倒反操作后立刻再进行倒反操作,这样的复合操作称这样的复合操作称为记为为记为组合成这种复合操作的每一个操作本身不一定组合成这种复合操作的每一个操作本身不一定是对称操作。其矩阵表示为是对称操作。其矩阵表示为:
17、_n1 0001 00010000100001cossinsincoscossinsincosqqqqqqqq旋转反映轴-映轴v旋转反映轴,旋转反映轴,简称映轴简称映轴(rotoreflection axis),其对,其对称操作是先进行绕映轴的旋转操作称操作是先进行绕映轴的旋转操作(n)后立刻再对垂后立刻再对垂直于该映轴的反映面进行反映操作直于该映轴的反映面进行反映操作m。符号为符号为(Sn),设对称轴沿设对称轴沿001方向,其矩阵表示为:方向,其矩阵表示为:1 0 00 1 00 010000100001cossinsincoscossinsincosqqqqqqqq旋转反映旋转反映Snv旋
18、转反映旋转反映 Sn,包括绕对称轴的逆时针旋转360/n,接着作垂直反射。v旋转反演和旋转反映(旋转反演和旋转反映(Improper rotation)被(译)称为异常旋转、非真旋转、不当旋转等。反轴和映轴间的对应关系反轴和映轴间的对应关系v用映轴表示的对称操作都可以用反轴表示,所以在用映轴表示的对称操作都可以用反轴表示,所以在新的晶体学国际表中只用反轴新的晶体学国际表中只用反轴。v所有的点对称操作实际上可以简单的分为简单旋转所有的点对称操作实际上可以简单的分为简单旋转操作和旋转倒反操作两种。全同操作就是一次真旋操作和旋转倒反操作两种。全同操作就是一次真旋转轴,倒反中心为一次反轴,镜面为二次反
19、轴,所转轴,倒反中心为一次反轴,镜面为二次反轴,所有映轴都可以用等价反轴表示。有映轴都可以用等价反轴表示。反轴和映轴间的对应关系v旋转倒反轴和旋转反映轴之间存在简单的一一对应旋转倒反轴和旋转反映轴之间存在简单的一一对应关系,旋转角度为关系,旋转角度为q q的反轴和旋转角为的反轴和旋转角为(qpqp)的映轴的映轴是等价的对称轴,这一关系也很容易从他们的表示是等价的对称轴,这一关系也很容易从他们的表示矩阵看出。所以矩阵看出。所以1 1次,次,2 2次,次,3 3次,次,4 4次和次和6 6次反轴次反轴分别等价于分别等价于2 2次,次,1 1次,次,6 6次,次,4 4次和次和3 3次映轴。次映轴。
20、_,_,_,_,_12 21 36 44 63练习题1.1.证明:证明:(1)(1)倒反中心是一次反轴倒反中心是一次反轴;(2);(2)镜面是镜面是二次反轴。二次反轴。2.找出一个立方体具有的所有旋转轴。找出一个立方体具有的所有旋转轴。(6个个2次轴,次轴,4个个3次轴,次轴,3个个4次轴。次轴。)非点式对称操作v非点式对称操作:是由点式操作与平移操作非点式对称操作:是由点式操作与平移操作复合后形成的新的对称操作,平移和旋转复复合后形成的新的对称操作,平移和旋转复合形成能导出螺旋旋转,平移和反映复合能合形成能导出螺旋旋转,平移和反映复合能导出滑移反映。导出滑移反映。螺旋轴螺旋轴v螺旋轴:螺旋轴
21、:先绕轴进行逆时针方向先绕轴进行逆时针方向360/n度的旋转,接度的旋转,接着作平行于该轴的平移着作平行于该轴的平移,平移量为平移量为(p/n)t,这里这里t是是平行于转轴方向的最短的晶格平移矢量,符号为平行于转轴方向的最短的晶格平移矢量,符号为np,n称为螺旋轴的次数,称为螺旋轴的次数,(n可以取值可以取值2,3,4,6),而而p只只取小于取小于n的整数。所以可以有以下的整数。所以可以有以下11种螺旋轴:种螺旋轴:21,31,32,41,42,43,61,62,63,64,65。二次螺旋轴二次螺旋轴螺旋轴螺旋轴 21,31,32,63螺旋轴螺旋轴41,42,43v41和和43彼此彼此对映。对
22、映。当其当其中之一中之一是左手是左手螺旋螺旋时,时,另一个为另一个为右手螺旋。右手螺旋。螺旋轴螺旋轴61,62,63,64石英结构中的六次螺旋轴石英的基本结构可以看成是硅氧四面体在三和六次螺旋轴附近的螺旋链。在如下左边其中一个三倍螺旋,右方显示的是螺旋连接构成晶体框架。www.uwgb.edu/dutchs/PETROLGY/QuartzStruc.HTM 滑移面滑移面v滑移反映面,滑移反映面,(滑移面滑移面)简称滑移面简称滑移面,其对称操作是其对称操作是沿滑移面进行镜面反映操作,然后接着进行与平行沿滑移面进行镜面反映操作,然后接着进行与平行于滑移面的一个方向的平移,平移的大小与方向等于滑移面
23、的一个方向的平移,平移的大小与方向等于滑移矢量。于滑移矢量。v点阵的周期性要求重复两次滑移反映后产生的新位点阵的周期性要求重复两次滑移反映后产生的新位置与起始位置相差一个点阵周期,所以滑移面的平置与起始位置相差一个点阵周期,所以滑移面的平移量等于该方向点阵平移周期的一半。移量等于该方向点阵平移周期的一半。滑移反射滑移反射不对称单位先经镜面反射,然后沿平行与镜面的方不对称单位先经镜面反射,然后沿平行与镜面的方向平移。向平移。滑移反射改变了不对称单位的手性。滑移反射改变了不对称单位的手性。滑移面分类v轴向滑移面:沿晶轴轴向滑移面:沿晶轴(a、b,c)方向滑移方向滑移;v对角滑移面:沿晶胞面对角线或
24、体对角线方向滑移,对角滑移面:沿晶胞面对角线或体对角线方向滑移,平移分量为对角线一半平移分量为对角线一半;v金刚石滑移面:沿晶胞面对角线或体对角线方向滑金刚石滑移面:沿晶胞面对角线或体对角线方向滑移,平移分量对角线移,平移分量对角线1/4的对角滑移面。的对角滑移面。只有在体心只有在体心或面心点阵中出现或面心点阵中出现,这时有关对角线的中点也有一,这时有关对角线的中点也有一个阵点,所以平移分量仍然是滑移方向点阵平移点个阵点,所以平移分量仍然是滑移方向点阵平移点阵周期的一半。阵周期的一半。镜面和滑移面 镜面或滑移面的符号。(在左边:沿镜面的边缘看。在右边是沿垂直于镜面的方向观看。箭头表示平移方向。
展开阅读全文