深度学习综述讨论简介deepLearning课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《深度学习综述讨论简介deepLearning课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 深度 学习 综述 讨论 简介 deepLearning 课件
- 资源描述:
-
1、Introduction to Deep LearningHuihui LiuMar.1,20171Outline Conception of deep learning Development history Deep learning frameworks Deep neural network architectures Convolutional neural networks Introduction Network structure Training tricks Application in Aesthetic Image Evaluation Idea 2Deep Learn
2、ing(Hinton,2006)Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data.The advantage of deep learning is to extracting features automatically instead of extracting features manually.Computer vision Speech recognition Natural l
3、anguage processing3Development History19431940 1950 1960 1970 1980 1990 2000 2010 MP model1958Single-layerPerceptron1969XORproblem1986BP algorithm1989CNN-LeNet1995 1997SVMLSTMGradient disappearance problem19912006DBNReLU2011 2012 2015DropoutAlexNetBNFaster R-CNNResidualNetGeoffrey HintonW.S.McCulloc
4、hW.PittsRosenblattMarvin MinskyYann LeCunHintonHintonHintonLeCunBengio4Deep Learning Frameworks5Deep neural network architectures Deep Belief Networks(DBN)Recurrent Neural Networks(RNN)Generative Adversarial Networks(GANs)Convolutional Neural Networks(CNN)Long Short-Term Memory(LSTM)6DBN(Deep Belief
5、 Network,2006)Hidden units and visible units Each unit is binary(0 or 1).Every visible unit connects to all the hidden units.Every hidden unit connects to all the visible units.There are no connections between v-v and h-h.Hinton G E.Deep belief networksJ.Scholarpedia,2009,4(6):5947.Fig1.RBM(restrict
6、ed Boltzmann machine)structure.Fig2.DBN(deep belief network)structure.Idea?Composed of multiple layers of RBM.How to we train these additional layers?Unsupervised greedy approach7RNN(Recurrent Neural Network,2013)What?RNN aims to process the sequence data.RNN will remember the previous information a
7、nd apply it to the calculation of the current output.That is,the nodes of the hidden layer are connected,and the input of the hidden layer includes not only the output of the input layer but also the output of the hidden layer.Marhon S A,Cameron C J F,Kremer S C.Recurrent Neural NetworksM/Handbook o
8、n Neural Information Processing.Springer Berlin Heidelberg,2013:29-65.Applications?Machine TranslationGenerating Image DescriptionsSpeech RecognitionHow to train?BPTT(Back propagation through time)8GANs(Generative Adversarial Networks,2014)GANs Inspired by zero-sum Game in Game Theory,which consists
9、 of a pair of networks-a generator network and a discriminator network.The generator network generates a sample from the random vector,the discriminator network discriminates whether a given sample is natural or counterfeit.Both networks train together to improve their performance until they reach a
10、 point where counterfeit and real samples can not be distinguished.Goodfellow I,Pouget-Abadie J,Mirza M,et al.Generative adversarial netsC/Advances in neural information processing systems.2014:2672-2680.Applacations:Image editingImage to image translationGenerate textGenerate images based on textCo
11、mbined with reinforcement learningAnd more9Long Short-Term Memory(LSTM,1997)10Neural NetworksNeuronNeural network11Convolutional Neural Networks(CNN)Convolution neural network is a kind of feedforward neural network,which has the characteristics of simple structure,less training parameters and stron
12、g adaptability.CNN avoids the complex pre-processing of image(etc.extract the artificial features),we can directly input the original image.Basic components:Convolution Layers,Pooling Layers,Fully connected Layers12Convolution layer The convolution kernel translates on a 2-dimensional plane,and each
13、 element of the convolution kernel is multiplied by the element at the corresponding position of the convolution image and then sum all the product.By moving the convolution kernel,we have a new image,which consists of the sum of the product of the convolution kernel at each position.local receptive
14、 fieldweight sharingReduced the number of parameters13Pooling layerPooling layer aims to compress the input feature map,which can reduce the number of parameters in training process and the degree of over-fitting of the model.Max-pooling:Selecting the maximum value in the pooling window.Mean-pooling
15、:Calculating the average of all values in the pooling window.14Fully connected layer and Softmax layerEach node of the fully connected layer is connected to all the nodes of the last layer,which is used to combine the features extracted from the front layers.Fig1.Fully connected layer.Fig2.Complete
16、CNN structure.Fig3.Softmax layer.15Training and Testing Forward propagation -Taking a sample(X,Yp)from the sample set and put the X into the network;-Calculating the corresponding actual output Op.Back propagation -Calculating the difference between the actual output Op and the corresponding ideal o
17、utput Yp;-Adjusting the weight matrix by minimizing the error.Training stage:Testing stage:Putting different images and labels into the trained convolution neural network and comparing the output and the actual value of the sample.Before the training stage,we should use some different small random n
18、umbers to initialize weights.16CNN Structure EvolutionHinton BPNeocognitionLeCunLeNetAlexNetHistorical breakthroughReLUDropoutGPU+BigDataVGG16VGG19MSRA-NetDeeper networkNINGoogLeNetInception V3Inception V4R-CNNSPP-NetFast R-CNNFaster R-CNNInception V2(BN)FCNFCN+CRFSTNetCNN+RNN/LSTMResNetEnhanced the
19、 functionality of the convolution moduleClassification taskDetection taskAdd new functional unitintegration19801998198920142015ImageNetILSVRC(ImageNet Large Scale Visual Recognition Challenge)20132014201520152014,2015201520122015BN(Batch Normalization)RPN17LeNet(LeCun,1998)LeNet is a convolutional n
20、eural network designed by Yann LeCun for handwritten numeral recognition in 1998.It is one of the most representative experimental systems in early convolutional neural networks.LeNet includes the convolution layer,pooling layer and full-connected layer,which are the basic components of modern CNN n
21、etwork.LeNet is considered to be the beginning of the CNN.network structure:3 convolution layers+2 pooling layers+1 fully connected layer+1 output layerHaykin S,Kosko B.GradientBased Learning Applied to Document RecognitionD.Wiley-IEEE Press,2009.18AlexNet(Alex,2012)Network structure :5 convolution
22、layers+3 fully connected layers The nonlinear activation function:ReLU(Rectified linear unit)Methods to prevent overfitting:Dropout,Data Augmentation Big Data Training:ImageNet-image database of million orders of magnitude Others:GPU,LRN(local response normalization)layerKrizhevsky A,Sutskever I,Hin
23、ton G E.ImageNet classification with deep convolutional neural networksC/International Conference on Neural Information Processing Systems.Curran Associates Inc.2012:1097-1105.19Overfeat(2013)Sermanet P,Eigen D,Zhang X,et al.OverFeat:Integrated Recognition,Localization and Detection using Convolutio
24、nal NetworksJ.Eprint Arxiv,2013.20VGG-Net(Oxford University,2014)input:a fixed-size 224*224 RGB imagefilters:a very small receptive field-3*3,with stride 1Max-pooling:2*2 pixel window,with stride 2Fig1.Architecture of VGG16Table 1:ConvNet configurations(shown in columns).The convolutional layer para
25、meters are denoted as“conv-”Simonyan K,Zisserman A.Very Deep Convolutional Networks for Large-Scale Image RecognitionJ.Computer Science,2014.Why 3*3 filters?Stacked conv.layers have a large receptive fieldMore non-linearityLess parameters to learn21Network-in-Network(NIN,Shuicheng Yan,2013)Network s
展开阅读全文