电化学原理第三章概要课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电化学原理第三章概要课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电化学 原理 第三 概要 课件
- 资源描述:
-
1、第三章第三章电极电极/溶液界面溶液界面的结构和性质的结构和性质一、概述一、概述二、电毛细现象二、电毛细现象三、双电层的微分电容三、双电层的微分电容四、双电层的结构四、双电层的结构五、零电荷电位五、零电荷电位六、电极六、电极/溶液界面的吸附现象溶液界面的吸附现象2022-11-19一、一、研究电极研究电极/溶液界面性质的意义溶液界面性质的意义由于各电极反应都发生在电极由于各电极反应都发生在电极/溶液的界面上,故界面结和性质对电极反溶液的界面上,故界面结和性质对电极反应影响很大。应影响很大。1.界面电场对电极反应速度的影响界面电场对电极反应速度的影响由于双电层极薄,故场强可很大,而电极反应是电荷在
2、相间转移的反由于双电层极薄,故场强可很大,而电极反应是电荷在相间转移的反应,故在巨大的界面电场下,电极反应速度也将发生极大的变化,可实应,故在巨大的界面电场下,电极反应速度也将发生极大的变化,可实现一些普通化学反应无法实现的反应,并且可通过改变电极电位改变反现一些普通化学反应无法实现的反应,并且可通过改变电极电位改变反应速度。应速度。2.电解质性质和电极材料及其表面状态的影响电解质性质和电极材料及其表面状态的影响这些性质对电极溶液界面结构和性质均能产生很大影响,故需进一这些性质对电极溶液界面结构和性质均能产生很大影响,故需进一步了解电极溶液界面性质,才能达到有效控制电极反应性质和反应速步了解电
3、极溶液界面性质,才能达到有效控制电极反应性质和反应速度的目的。度的目的。3.13.1 概述概述2022-11-19二、理想极化电极二、理想极化电极电极电极/溶液界面:溶液界面:是两相间一界面层,指与任何一相基体性是两相间一界面层,指与任何一相基体性质均不同的相间过渡区。质均不同的相间过渡区。界面结构:界面结构:主要指在这一过渡区域中剩余电荷和电位的分主要指在这一过渡区域中剩余电荷和电位的分布以及它们与电极电位的关系。布以及它们与电极电位的关系。界面性质:界面性质:主要指界面层的物理化学性质,主要是电性质主要指界面层的物理化学性质,主要是电性质。研究界面结构的基本方法:通常测量某些重要的,反映界
4、研究界面结构的基本方法:通常测量某些重要的,反映界面性质的参数(如界面张力、微分电容、电极表面剩余电荷面性质的参数(如界面张力、微分电容、电极表面剩余电荷密度等)及其与电极电位的函数关系。把实验结果与理论推密度等)及其与电极电位的函数关系。把实验结果与理论推算出的模型相比较,若接近,则模型有一定正确性。但前提算出的模型相比较,若接近,则模型有一定正确性。但前提条件是选一个适合界面研究的电极体系。条件是选一个适合界面研究的电极体系。2022-11-19直流电通过一个电极时,可能起到以下两种作用:直流电通过一个电极时,可能起到以下两种作用:(1)参与电极反应而被消耗掉。这部分电流相当于)参与电极反
5、应而被消耗掉。这部分电流相当于通过一个负载电阻而被消耗。通过一个负载电阻而被消耗。(2)参与建立或改变双电层。这部分电流的作用类)参与建立或改变双电层。这部分电流的作用类似于给电容器充电,只在电路中引起短暂的充电似于给电容器充电,只在电路中引起短暂的充电电流。电流。(a)电极体系的等效电路)电极体系的等效电路(b)理想极化电极的等效电路)理想极化电极的等效电路2022-11-19理想极化电极理想极化电极:不发生任何电极反应的体系。不发生任何电极反应的体系。与其它理想体系类似与其它理想体系类似,只有相对的理想体系,电极电位处于只有相对的理想体系,电极电位处于特定范围及特殊电场下,可满足理想极化电
6、极的条件。特定范围及特殊电场下,可满足理想极化电极的条件。绝对的理想极化电极是不存在的。只有在一定的电极电位范绝对的理想极化电极是不存在的。只有在一定的电极电位范围内,某些真实的电极体系可以满足理想极化电极的条件。围内,某些真实的电极体系可以满足理想极化电极的条件。如:汞和高纯氯化钾组成的体系。如:汞和高纯氯化钾组成的体系。2HgHg22+2e电位电位0.1VK+eK电位电位-1.6V该电极在该电极在0.1V-1.6V范围内,没有电极反应发生,可作为理范围内,没有电极反应发生,可作为理想极化电极。想极化电极。2022-11-19电毛细曲线微分电容积分电容微分电容曲线 双电层基本结构紧密层和分散
7、层李普曼方程)6.3(iqddqCdoCdqCoioCddq分紧CCCd1112022-11-193.2电毛细现象电毛细现象一、电毛细曲线及其测定一、电毛细曲线及其测定 两相间均存在界面张力,电极体系界面张力不仅与界面两相间均存在界面张力,电极体系界面张力不仅与界面层的物质有关,而且与电极电位有关,此界面张力随电极电层的物质有关,而且与电极电位有关,此界面张力随电极电位变化的现象叫做电毛细现象。而界面张力与电极电位的关位变化的现象叫做电毛细现象。而界面张力与电极电位的关系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的电毛细曲线。电毛细曲线
8、。2022-11-19电毛细曲线近似有最高点的抛物线,因汞电毛细曲线近似有最高点的抛物线,因汞/溶液界面存在双溶液界面存在双电层,由于电极界面同一侧带相同电荷,相互排斥作用力电层,由于电极界面同一侧带相同电荷,相互排斥作用力图使界面扩大。与界面张力使界面缩小相反,故带电界面图使界面扩大。与界面张力使界面缩小相反,故带电界面张力比不带电时小。张力比不带电时小。2022-11-19二、电毛细曲线的微分方程二、电毛细曲线的微分方程 根据根据Gibbs等温吸附方程,由热力学可推导出界面张力等温吸附方程,由热力学可推导出界面张力与电极电位之间的关系式与电极电位之间的关系式d=-idi-qd3.5i为为i
9、物质化学位,因理想溶液无化学反应发生,故溶液中物质化学位,因理想溶液无化学反应发生,故溶液中组成不变。组成不变。i不变不变,此为此为Lippman(李普曼李普曼)公式,公式,q为电极表为电极表面剩余电荷密度,单位为面剩余电荷密度,单位为c/cm2,单位为单位为V,为为J/cm26.3)(iq2022-11-19若电极表面剩余电荷为零,即无离子双电层存在时,若电极表面剩余电荷为零,即无离子双电层存在时,q=0则则/0,对应于图,对应于图3.3最高点,最高点,无电荷排斥作用,界面张力最大无电荷排斥作用,界面张力最大;此时的电极电位称为零电荷电位此时的电极电位称为零电荷电位,常用符号常用符号0表示。
10、表示。6.3)(iq无论电极表面存在剩余电荷符号如何,界面张力均随剩余电无论电极表面存在剩余电荷符号如何,界面张力均随剩余电荷数量的增加而降低。荷数量的增加而降低。由上式由上式可直接由电毛细曲线斜率求某一电位密度下电极电位可直接由电毛细曲线斜率求某一电位密度下电极电位表面剩余电荷密度表面剩余电荷密度q判断表面剩余电荷密度符号判断表面剩余电荷密度符号及零电荷电位。及零电荷电位。2022-11-19三、离子表面剩余量三、离子表面剩余量构成双电层溶液一侧发生了离子的吸附。金属侧电子过剩构成双电层溶液一侧发生了离子的吸附。金属侧电子过剩或不足,溶液侧剩余正负离子浓度不同,发生了吸附现象或不足,溶液侧剩
11、余正负离子浓度不同,发生了吸附现象,见下图。,见下图。2022-11-19离子表面剩余量:离子表面剩余量:界面层存在时离子的摩尔数与无离子双界面层存在时离子的摩尔数与无离子双电层存在时离子的摩尔数之差定义为离子的表面剩余量。电层存在时离子的摩尔数之差定义为离子的表面剩余量。)22.3(ln)()21.3(ln)(aRTvvvTaRTvvvT可实际应用的求离可实际应用的求离子表面剩余量的公子表面剩余量的公式式离子表面剩余量步骤如下:离子表面剩余量步骤如下:(1)测量不同浓度电解质溶液的电毛细曲线测量不同浓度电解质溶液的电毛细曲线-关系曲线关系曲线(2)从各条电毛细曲线上取同一相对电位下的从各条电
12、毛细曲线上取同一相对电位下的值。做值。做lna关系关系曲线曲线(3)根据根据lna关系曲线,求出某一浓度下的斜率关系曲线,求出某一浓度下的斜率即由即由3.21和和3.22求得该浓度下的离子表面剩余量。求得该浓度下的离子表面剩余量。)ln(a2022-11-193.3双电层的微分电容双电层的微分电容一、一、双电层的电容双电层的电容界面剩余电荷的变化将引起界面双电层电位差改变,因而电极界面剩余电荷的变化将引起界面双电层电位差改变,因而电极/溶溶液界面具有贮存电荷的能力,即具有电容的特性。液界面具有贮存电荷的能力,即具有电容的特性。理想极化电极可作为平板电容器处理,即把电极理想极化电极可作为平板电容
13、器处理,即把电极/溶液界面的两个溶液界面的两个剩余电荷层比拟成电容器的两个平行板,由物理学知,该电容器剩余电荷层比拟成电容器的两个平行板,由物理学知,该电容器的电容值为一常数,即的电容值为一常数,即式中:式中:O为真空中的介电常数,为真空中的介电常数,r为实物相的相对介电常数。为实物相的相对介电常数。L两电容器平行板之间距离,常用单位两电容器平行板之间距离,常用单位cm;C为电容常用单位为为电容常用单位为F/cm2.lCro2022-11-19界面双电层并非完全恒定值,而随电极电位变化。故利用微分形界面双电层并非完全恒定值,而随电极电位变化。故利用微分形式来定义界面双电层的电容,称微分电容,即
14、式来定义界面双电层的电容,称微分电容,即(3.24)Cd为微分电容,表示引起电极电位微小变化时所需引入电极表面为微分电容,表示引起电极电位微小变化时所需引入电极表面的电量。相反,也表明界面上电极电位发生微小变化(扰动)时的电量。相反,也表明界面上电极电位发生微小变化(扰动)时所具备的贮存电荷的能力。所具备的贮存电荷的能力。由微分电容定义和李普曼方程,由电毛细曲线很易求得微分电容由微分电容定义和李普曼方程,由电毛细曲线很易求得微分电容值值dQdqCd)25.3(22Cdq所以因2022-11-19可根据电毛细曲线确定零电荷电位O,从而可利用式(3.24)求得任电极电位下的电极表面剩余电荷密度q,
15、即故可计算从零电荷电位O到某一电位之间的平均电容值Ci即Ci为积分电容,由(3.27)可看出微分电容与积分电容的关系。)36.3(odCdqqdqo)37.3(1odCqCdooi2022-11-192022-11-19一、一、微分电容曲线微分电容曲线由图由图3.9知,微分电容随电极电位和溶液浓度变化。电位相同时。知,微分电容随电极电位和溶液浓度变化。电位相同时。随浓度增大。微分电容值也增大,表明此时双电层有效厚度减小随浓度增大。微分电容值也增大,表明此时双电层有效厚度减小,即两个剩余电荷层之间的有效距离减小。即随着浓度变化、双,即两个剩余电荷层之间的有效距离减小。即随着浓度变化、双电层结构也
16、会变化。电层结构也会变化。2022-11-19在稀溶液中,微分电容曲线将出现最小值(图在稀溶液中,微分电容曲线将出现最小值(图3.9中曲线中曲线13)。)。溶液越稀。最小值越明显。随溶液浓度增加。最小值逐渐消失。溶液越稀。最小值越明显。随溶液浓度增加。最小值逐渐消失。实验证明。出现微分电容最小值的电位就是同一电极体系电毛细实验证明。出现微分电容最小值的电位就是同一电极体系电毛细曲线最高点所对应的电位。即零电荷电位把微分电容曲线分成了曲线最高点所对应的电位。即零电荷电位把微分电容曲线分成了两部分。左半部(两部分。左半部(O)电极表面剩余电荷密度电极表面剩余电荷密度q为正值。右半为正值。右半部(部
17、(O)的电极表面剩余电荷的电极表面剩余电荷q为负值。为负值。电极表面剩余电苛较少时,即零电荷电位附近,微分电容随电极电极表面剩余电苛较少时,即零电荷电位附近,微分电容随电极电位变化较明显。电荷密度增大时,电容值也趋于稳定值,进而电位变化较明显。电荷密度增大时,电容值也趋于稳定值,进而出现电容值不随电位变化的所谓出现电容值不随电位变化的所谓“平台平台”区。在区。在q0的左半部曲的左半部曲线对应的平台区线对应的平台区Cd值约为值约为3240F/cm2,右半部(右半部(q0),),平台区平台区对应的对应的Cd值约为值约为1620F/cm2,表明由阴离子和阳离子组成的双电表明由阴离子和阳离子组成的双电
18、层在结构上的差别。层在结构上的差别。从理论上解释微分电容的变化规律,说明界面结构及影响因素对从理论上解释微分电容的变化规律,说明界面结构及影响因素对微分电容的影响,正是建立双电层模型时要考虑的一个重要内容微分电容的影响,正是建立双电层模型时要考虑的一个重要内容,根据微分电容曲线所提供的信息来研究界面结构与性质的实验,根据微分电容曲线所提供的信息来研究界面结构与性质的实验方法叫微分电容法。方法叫微分电容法。2022-11-19微分电容曲线可求给定电极电位下的电极表面剩余电荷qCddq/dQ积分后可得因0时,q=0,以此作边界条件代入上式。则 电极电位为时的q值相当于图3.10中的阴影部分。积分常
19、数dCqd)30.3(0dCd2022-11-19与电毛细现象曲线求与电毛细现象曲线求q值相比。微分电容更精确和灵敏。前者用积值相比。微分电容更精确和灵敏。前者用积分函数,后者用微分函数。分函数,后者用微分函数。Cddq/dQ但二者相互联系。因需用电毛细曲线法确定零电荷电位。但二者相互联系。因需用电毛细曲线法确定零电荷电位。2022-11-19一、一、电极电极/溶液界面的基本结构溶液界面的基本结构静电作用使相反电荷靠近,倾向于紧贴电极表面排列,图静电作用使相反电荷靠近,倾向于紧贴电极表面排列,图3.11。而热运动使带电粒子倾向于均匀分布,使剩余电荷不能紧。而热运动使带电粒子倾向于均匀分布,使剩
20、余电荷不能紧贴电极表面分布,有一定扩散性,形成扩散层。二者相互作用使贴电极表面分布,有一定扩散性,形成扩散层。二者相互作用使不同条件下电极体系中,双电层由紧密层和分散层两部分组成。不同条件下电极体系中,双电层由紧密层和分散层两部分组成。3.双电层结构双电层结构2022-11-19金属溶液界面剩余电荷与电位的分布的溶液一侧金属溶液界面剩余电荷与电位的分布的溶液一侧 d为紧贴电极表面排列的水化离子的电荷中心与电极表面的为紧贴电极表面排列的水化离子的电荷中心与电极表面的距离,也为离子电荷能接近表面的最小距离。紧密层厚度为距离,也为离子电荷能接近表面的最小距离。紧密层厚度为d,若假定若假定d内介电常数
21、为恒定值。则该层内电位分布是线性变化的。内介电常数为恒定值。则该层内电位分布是线性变化的。从从x=d到溶液中远处剩余电荷为零的双电层部分即为分散层。其到溶液中远处剩余电荷为零的双电层部分即为分散层。其电位分布是非线性变化的。电位分布是非线性变化的。2022-11-19距离电极表面距离电极表面d处的平均电位称处的平均电位称1电位。它在不同结构紧电位。它在不同结构紧密层中密层中d大小不同,所以大小不同,所以1电位为距离电极表面电位为距离电极表面d处,即离子处,即离子电荷能接近电极表面的最小距离处的平均电位。或紧密层与电荷能接近电极表面的最小距离处的平均电位。或紧密层与分散层交界处平均电位。分散层交
22、界处平均电位。若若a表示整个双电层电位,则紧密层电位差为表示整个双电层电位,则紧密层电位差为a1,分散层电位差为分散层电位差为1,a及及1是相对溶液深处的电位(规定为是相对溶液深处的电位(规定为零)。零)。a=(a1)+1双电层电容为双电层电容为)(分紧31.311)(111CCdqddqddqadCda即双电层微分电容由紧密层电容即双电层微分电容由紧密层电容C紧紧和分散层电容和分散层电容C分分串联组成。串联组成。2022-11-19 对于双电层的具体结构,一百多年来不同学者提出了不同的看法。最早于1879年Helmholz提出平板型模型;1910年Gouy和1913年Chapman修正了平板
23、型模型,提出了扩散双电层模型;后来Stern又提出了Stern模型。二、斯特恩(二、斯特恩(SternStern)模型模型2022-11-19双电层方程式推导需考虑下列因素双电层方程式推导需考虑下列因素(1 1)假设离子与电极间除静电引力外无其它相互作用,假设离子与电极间除静电引力外无其它相互作用,双电层厚度比电极曲线半径小很多,将电极视为平板电极,双电层厚度比电极曲线半径小很多,将电极视为平板电极,粒子在界面电场中服从波尔兹曼分布。粒子在界面电场中服从波尔兹曼分布。(2)忽略粒子的体积,假定溶液中离子电荷是连续分布忽略粒子的体积,假定溶液中离子电荷是连续分布的(实际上离子具有粒子性,故离子电
24、荷是不连续分布的)的(实际上离子具有粒子性,故离子电荷是不连续分布的)。故可用泊松(。故可用泊松(PoissonPoisson)方程。方程。把剩余电荷的分布与双电层把剩余电荷的分布与双电层溶液一侧的电位分布联系起来。电极表面剩余电荷密度溶液一侧的电位分布联系起来。电极表面剩余电荷密度q为正为正值时,值时,0 0,随距离随距离x x增加,增加,值逐渐减小值逐渐减小即:即:(3)将双电层溶液一侧的电位分布与电极表面剩余电荷将双电层溶液一侧的电位分布与电极表面剩余电荷密度联系起来。以便更明确地描述分散层结构的特点。密度联系起来。以便更明确地描述分散层结构的特点。0 x2022-11-19根据高斯定理
展开阅读全文