书签 分享 收藏 举报 版权申诉 / 78
上传文档赚钱

类型Ch05-《中级微观经济学》范里安-英文版课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5195449
  • 上传时间:2023-02-16
  • 格式:PPT
  • 页数:78
  • 大小:681KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《Ch05-《中级微观经济学》范里安-英文版课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中级微观经济学 Ch05 中级 微观经济学 范里安 英文 课件
    资源描述:

    1、Chapter FiveChoiceEconomic RationalityuThe principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.uThe available choices constitute the choice set.uHow is the most preferred bundle in the choice set located?Rational Constrained Choice

    2、x1x2Rational Constrained Choicex1x2UtilityRational Constrained ChoiceUtilityx2x1Rational Constrained Choicex1x2UtilityRational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUti

    3、lityx1x2Affordable,but not the most preferred affordable bundle.Rational Constrained Choicex1x2UtilityAffordable,but not the most preferred affordable bundle.The most preferredof the affordablebundles.Rational Constrained Choicex1x2UtilityRational Constrained ChoiceUtilityx1x2Rational Constrained Ch

    4、oiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained Choicex1x2Rational Constrained Choicex1x2AffordablebundlesRational Constrained Choicex1x2AffordablebundlesRational Constrained Choicex1x2AffordablebundlesMore preferredbundlesRational Constrained ChoiceAffordablebundlesx1x2Mor

    5、e preferredbundlesRational Constrained Choicex1x2x1*x2*Rational Constrained Choicex1x2x1*x2*(x1*,x2*)is the mostpreferred affordablebundle.Rational Constrained ChoiceuThe most preferred affordable bundle is called the consumers ORDINARY DEMAND at the given prices and budget.uOrdinary demands will be

    6、 denoted byx1*(p1,p2,m)and x2*(p1,p2,m).Rational Constrained ChoiceuWhen x1*0 and x2*0 the demanded bundle is INTERIOR.uIf buying(x1*,x2*)costs$m then the budget is exhausted.Rational Constrained Choicex1x2x1*x2*(x1*,x2*)is interior.(x1*,x2*)exhausts thebudget.Rational Constrained Choicex1x2x1*x2*(x

    7、1*,x2*)is interior.(a)(x1*,x2*)exhausts thebudget;p1x1*+p2x2*=m.Rational Constrained Choicex1x2x1*x2*(x1*,x2*)is interior.(b)The slope of the indiff.curve at(x1*,x2*)equals the slope of the budget constraint.Rational Constrained Choiceu(x1*,x2*)satisfies two conditions:u(a)the budget is exhausted;p1

    8、x1*+p2x2*=mu(b)the slope of the budget constraint,-p1/p2,and the slope of the indifference curve containing(x1*,x2*)are equal at(x1*,x2*).Computing Ordinary DemandsuHow can this information be used to locate(x1*,x2*)for given p1,p2 and m?Computing Ordinary Demands-a Cobb-Douglas Example.uSuppose tha

    9、t the consumer has Cobb-Douglas preferences.U xxx xa b(,)1212 Computing Ordinary Demands-a Cobb-Douglas Example.uSuppose that the consumer has Cobb-Douglas preferences.uThenU xxx xa b(,)1212 MUUxaxxab11112 MUUxbx xa b22121 Computing Ordinary Demands-a Cobb-Douglas Example.uSo the MRS isMRSdxdxUxUxax

    10、xbx xaxbxaba b 211211212121 /.Computing Ordinary Demands-a Cobb-Douglas Example.uSo the MRS isuAt(x1*,x2*),MRS=-p1/p2 soMRSdxdxUxUxaxxbx xaxbxaba b 211211212121 /.Computing Ordinary Demands-a Cobb-Douglas Example.uSo the MRS isuAt(x1*,x2*),MRS=-p1/p2 soMRSdxdxUxUxaxxbx xaxbxaba b 211211212121 /.axbx

    11、ppxbpapx21122121*.(A)Computing Ordinary Demands-a Cobb-Douglas Example.u(x1*,x2*)also exhausts the budget sop xp xm1 12 2*.(B)Computing Ordinary Demands-a Cobb-Douglas Example.uSo now we know thatxbpapx2121*(A)p xp xm1 12 2*.(B)Computing Ordinary Demands-a Cobb-Douglas Example.uSo now we know thatxb

    12、papx2121*(A)p xp xm1 12 2*.(B)SubstituteComputing Ordinary Demands-a Cobb-Douglas Example.uSo now we know thatxbpapx2121*(A)p xp xm1 12 2*.(B)p xpbpapxm1 12121*.Substituteand getThis simplifies to.Computing Ordinary Demands-a Cobb-Douglas Example.xamab p11*().Computing Ordinary Demands-a Cobb-Dougla

    13、s Example.xbmab p22*().Substituting for x1*in p xp xm1 12 2*then givesxamab p11*().Computing Ordinary Demands-a Cobb-Douglas Example.So we have discovered that the mostpreferred affordable bundle for a consumerwith Cobb-Douglas preferencesU xxx xa b(,)1212 is(,)(),().*()xxamab pbmab p1212 Computing

    14、Ordinary Demands-a Cobb-Douglas Example.x1x2xamab p11*()xbmab p22*()U xxx xa b(,)1212 Rational Constrained ChoiceuWhen x1*0 and x2*0 and (x1*,x2*)exhausts the budget,and indifference curves have no kinks,the ordinary demands are obtained by solving:u(a)p1x1*+p2x2*=yu(b)the slopes of the budget const

    15、raint,-p1/p2,and of the indifference curve containing(x1*,x2*)are equal at(x1*,x2*).Rational Constrained ChoiceuBut what if x1*=0?uOr if x2*=0?uIf either x1*=0 or x2*=0 then the ordinary demand(x1*,x2*)is at a corner solution to the problem of maximizing utility subject to a budget constraint.Exampl

    16、es of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Examples of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes Case

    17、x1x2xyp22*x10*MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes Casex1x2xyp11*x20*MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes CaseSo when U(x1,x2)=x1+x2,the mostpreferred affordable bundle is(x1*,x2*)where 0,py)x,x(1*2*1and 2*2*

    18、1py,0)x,x(if p1 p2.Examples of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Slope=-p1/p2 with p1=p2.yp1yp2Examples of Corner Solutions-the Perfect Substitutes Casex1x2All the bundles in the constraint are equally the most preferred affordable when p1=p2.yp2yp1Examples of Corner Solutions-t

    19、he Non-Convex Preferences Casex1x2BetterExamples of Corner Solutions-the Non-Convex Preferences Casex1x2Examples of Corner Solutions-the Non-Convex Preferences Casex1x2Which is the most preferredaffordable bundle?Examples of Corner Solutions-the Non-Convex Preferences Casex1x2The most preferredaffor

    20、dable bundleExamples of Corner Solutions-the Non-Convex Preferences Casex1x2The most preferredaffordable bundleNotice that the“tangency solution”is not the most preferred affordablebundle.Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-

    21、the Perfect Complements Casex1x2MRS=0U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Perfect Complements Casex1x2MRS=-MRS=0U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Perfect Complements Casex1x2MRS=-MRS=0MRS is undefinedU(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Per

    22、fect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1Which is the mostpreferred affordable bundle?Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1The most preferredaffordable bundleExa

    23、mples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*(a)p1x1*+p2x2*=mExamples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*(a)p1x1*+p2x2*=m(

    24、b)x2*=ax1*Examples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Examples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mExamples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x

    25、2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mwhich gives21*1appmx Examples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mwhich gives.appamx;appmx21*221*1 Examples of Kinky Solutions-the Perfect

    26、Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mwhich givesA bundle of 1 commodity 1 unit anda commodity 2 units costs p1+ap2;m/(p1+ap2)such bundles are affordable.appamx;appmx21*221*1 Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x

    27、2)=minax1,x2x2=ax1xmpap112*xampap212*Choosing Taxes:Various TaxesuQuantity tax:on x:(p+t)xuValue tax:on px:(1+t)pxAlso called ad valorem taxuLump sum tax:TuIncome tax:Can be proportional or lump sumIncome Tax vs.Quantity TaxuOriginal budget:p1x1+p2x2=muAfter quantity tax:(p1+t)x1+p2x2=muAt optimal c

    28、hoice(x1*,x2*)(p1+t)x1*+p2x2*=m (5.2)Tax revenue:R*=tx1*uWith an income tax,budget is:p1x1+p2x2=m-tx1*Income vs.Quantity TaxuProposition:(x1*,x2*)is affordable under income taxuEquivalent to:prove that(x1*,x2*)satisfies budget constraint under income tax.uOr,budget constraint holds at point(x1*,x2*).p1x1*+p2x2*=m-tx1*uWhich is true according to(5.2).uIt is not an optimal choice because prices are different.uConclusion:The optimal choice must be more preferred to(x1*,x2*)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:Ch05-《中级微观经济学》范里安-英文版课件.ppt
    链接地址:https://www.163wenku.com/p-5195449.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库