深度学习在图像中的应用课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《深度学习在图像中的应用课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 深度 学习 图像 中的 应用 课件
- 资源描述:
-
1、第七章深度学习在图像中的应用of3117.1图像识别基础7.2基于深度学习的大规模图像识别7.3应用举例:人脸识别7.4应用举例:图像风格化习题7.5应用举例:图像标注7.1图像识别基础第七章 深度学习在图像中的应用of3121人眼和计算机的图像识别过程7.1图像识别基础第七章 深度学习在图像中的应用of313 对于一张自然场景图像,我们人眼看到的会是左边这张生动的图像;而对于计算机而言,看到的确是一堆枯燥的数字(这些数字对应的是图像各像素点的灰度等特征值)。如何在像素点的特征值和图像语义之间进行处理和关联是计算机进行图像识别的一大难题。2计算机对图像进行识别的难点第七章深度学习在图像中的应用
2、全国高校标准教材云计算姊妹篇,剖析深度学习核心技术和实战应用of3147.1图像识别基础7.2基于深度学习的大规模图像识别7.3应用举例:人脸识别7.4应用举例:图像风格化习题7.5应用举例:图像标注7.2基于深度学习的大规模图像识别第七章 深度学习在图像中的应用of3151大规模图像数据库:Imagenet ImageNet由美国斯坦福大学Li Fei-fei教授的研究团队提出,是一个很大规模的数据库,包含超过一千五百万具有标签的高清图像,这些图像可以分成约两万两千个类别。这些图像均从网络中采集而得;并使用亚马逊的“土耳其机器人”众包工具,集广大网民的力量手工标注获得图像对应的标签。7.2基
3、于深度学习的大规模图像识别第七章 深度学习在图像中的应用of3162AlexNet网络结构 AlexNet总共包含8个学习层:前5层是卷积层,最后3层是全连接层。在这5个卷积层中,第1、2、5层后面有最大值池化(Max pooling)层。7.2基于深度学习的大规模图像识别第七章 深度学习在图像中的应用of3173非线性激活函数ReLU AlexNet中,使用ReLU激活函数来替代Sigmoid激活函数。相比较于Sigmoid激活函数而言:(1)ReLU激活函数在大于0的部分梯度为常数,不会出现梯度弥散现象;(2)ReLU激活函数在小于0的部分梯度都为0,可以在一定程度上缓解过拟合现象的发生;
4、(3)ReLU激活函数的导数计算非常简单快速(3)ReLU激活函数的导数计算非常简单快速7.2基于深度学习的大规模图像识别第七章 深度学习在图像中的应用of3184.增加训练样本 增加训练样本,又称为数据增强(data augmentation),通过对图像进行变换人为地扩大训练数据集。该方法是减少过拟合现象的一个最容易和最普遍的方法。常见数据增强方法:1、随机裁剪和水平翻转;2、颜色调整7.2基于深度学习的大规模图像识别第七章 深度学习在图像中的应用of3195.dropout技术 在网络训练期间,dropout技术相当于是对整体神经网络进行子采样。具体实现方法为:以50%的概率将神经网络中
5、每一个隐层结点的输出设置为0,使之不参与前向传播和反向传播。第七章深度学习在图像中的应用全国高校标准教材云计算姊妹篇,剖析深度学习核心技术和实战应用of31107.1图像识别基础7.2基于深度学习的大规模图像识别7.3应用举例:人脸识别7.4应用举例:图像风格化习题7.5应用举例:图像标注7.3应用举例:人脸识别第七章 深度学习在图像中的应用of3111 在自然场景中进行自动人脸识别的经典流程一般分为以下三个步骤:人脸检测(face recognition)、人脸对齐(face alignment,又称作面部特征点对齐)、特征提取和分类器设计1人脸识别的经典流程7.3应用举例:人脸识别第七章
展开阅读全文