书签 分享 收藏 举报 版权申诉 / 40
上传文档赚钱

类型大学精品课件:结构力学-8力法.PPT

  • 上传人(卖家):金钥匙文档
  • 文档编号:518594
  • 上传时间:2020-05-11
  • 格式:PPT
  • 页数:40
  • 大小:2.51MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:结构力学-8力法.PPT》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 结构 力学 力法
    资源描述:

    1、1 2 82 超静定次数的确定 83 力法的基本概念 84 力法的典型方程 86 对称性的利用 85 力法的计算步骤和示例 87 超静定结构的位移计算 89 温度变化时超静定结构的计算 810 支座移动时超静定结构的计算 811 超静定结构的特性 88 最后内力图的校核 81 超静定结构概述 第八章第八章 力力 法法 3 41 概 述 1. 静定结构与超静定结构 静定结构: 超静定结构: A B C P P 全部反力和内力只用平衡条件便可确 定的结构。 仅用平衡条件不能确定全部反力和 内力的结构。 A B P HA V A RB V A HA RB RC 外力超静定问题 内力超静定问题 返返

    2、回回 4 P A B C P 1 X 2 . 超静定结构在几何组成上的特征 多余联系与多余未知力的选择。 是几何不变且具有“多余”联系(外部或内部)。 多余联系: 这些联系仅就保持结构的几何不变 性来说,是不必要的。 多余未知力: 多余联系中产生的力称为多余未 知力(也称赘余力)。 此超静定结构有一个多余联此超静定结构有一个多余联 系,既有一个多余未知力。系,既有一个多余未知力。 此超静定结构有二个多余联此超静定结构有二个多余联 系,既有二个多余未知力。系,既有二个多余未知力。 1 X 2 X 返返 回回 5 3. 超静定结构的类型 (1)超静定梁; (2)超静定桁架; (3)超静定拱; 4.

    3、 超静定结构的解法 求解超静定结构,必须 综合考虑三个方面的条件: (1)平衡条件; (2)几何条件; (3)物理条件。 具体求解时,有两种基本(经典)方法力法和位移法。 (4)超静定刚架; (5)超静定组合结构。 返返 回回 6 42 超静定次数的确定 1. 超静定次数: 2 .确定超静定次数的方法: 解除多余联系的方式通 常有以下几种: (1)去掉或切断一根链杆,相 当于去掉一个联系。 1 X (2)拆开一个单铰,相当 于去掉两个联系。 用力法解超静定结构时,首先必须确定多余联系 或多余未知力的数目。 1 X 1 X 2 X 多余联系或多余未知力的个数。 采用解除多余联系的 方法。 返返

    4、回回 7 3. 在刚结处作一切口, 或去掉一个固定端,相当 于去掉三个联系。 1 X 1 X 3 X 4. 将刚结改为单铰联 结,相当于去掉一个联系。 1 X 1 X 应用上述解除多余 联系(约束)的方法,不难 确定任何 超静定结构的 超静定次数。 X X2 2 X X2 2 返返 回回 8 3. 例题:确定图示结构的超静定次数(n)。 1 X 2 X 3 X 4 X5 X 6 X n=6 1 X 2 X 3 X 4 X 5 X 6 X n=37=21 对于具有较多框格的结构,可 按 框格的数目确定,因为一个封 闭框格,其 超 静定次数等于三。 当结构的框格数目为 f ,则 n=3f 。 返返

    5、 回回 9 43 力法的基本概念 首先以一个简单的例子,说明力法的思路和基本概 念。讨论如何在计算静定结构的基础上,进一步寻求计 算超静定结构的方法。 A B EI L 1判断超静定次数: n=1 q q 1 X A B 原结构原结构 2. 确定(选择)基本结构。 3写出变形(位移)条件: 1 X 11 P1 (a)(a) (b)(b) q 基本结构基本结构 根据叠加原理,式(a) 可写成 返返 回回 10 图1M 图 P M 1X1 图M 8 qL 2 2 qL 2 L 8 qL 2 将 代入(b)得 4 .建立力法基本方程 (41) 5. 计算系数和常数项 6. 将11、 11代入力法方程

    6、式(4-1),可求得 A B EI L q (b)(b) 此方程便为一次超静定结 构的力法方程。 = EI 1 2 L 2 3 2L 11= 11x1 = EI 1 2 qL 2 4 3L _ ( 3 1 L ) 多余未知力x1求出后,其余反力、内 力的计算都是静定问题。利用已绘出 的 M1图 和MP图按叠加法绘M图。 q 返返 回回 11 结结 论论 象上述这样解除超静定结构的多余联系而 得到静定的基本结构,以多余未知力作为基本未 知量,根据基本结构应与原结构变形相同而建立 的位移条件,首先求出多余未知力,然后再由平 衡条件计算其余反力、内力的方法,称为力法力法。 力法整个计算过程自始至终都

    7、是在基本结构 上进行的,这就把超静定结构的计算问题,转化 为已经熟悉的静定结构的内力和位移的计算问题。 返返 回回 12 44 力法的典型方程 1. 三次超静定问题的力法方程 用力法计算超静定结构的关键,是根据位移条件建立力法方 程以求解多余未知力,下面首先以三次超静定结构为例进行推导。 A B P P 首先选取基本结构(见图b) X X1 1 X X2 2 A B P P X X3 3 基本结构的位移条件为: 1=0 2=0 3=0 设当 和荷载 P 分别作用在结构上时, A点的位移 沿X1方向: 沿X2方向: 沿X3方向: 据叠加原理,上述位移条件可写成 原结构 基本结构 1= (42)

    8、(a) (b) 11 21、22、23和2P ; 31、32、33和3P 。 2=21X1+22X2+23X3+2P=0 3=31X1+32X2+33X3+3P=0 11X1 +12X2 +13X3 +1P =0 、12 、13 和1P ; 返返 回回 13 2. n次超静定问题的力法典型(正则)方程 对于n次超静定结构,有n个多余未知力,相应也有 n个位移条件,可写出n个方程 11X1+ 12X2+ + 1iXi+ + 1nXn+1P=0 (43) 这便是n次超静定结构的力法典型(正则)方程。式中 Xi为多余未知力, i i为主系数,i j(ij)为副系数, iP 为常数项(又称自由项)。

    9、11X1+12X2+13X3+1P=0 (42) 21X1+22X2+23X3+2P=0 31X1+32X2+33X3+3P=0 i 1X1+ i 2X2+ + i iXi+ + i nXn+iP=0 n1X1+ n2X2+ + niXi+ + nnXn+nP=0 返返 回回 14 3. 力法方程及系数的物理意义 (1)力法方程的物理意义为: (2)系数及其物理意义: 下标相同的系数 i i 称为主系数(主位移),它是单位 多余未知力 单独作用时所引起的沿其自身方向上 的位移,其值恒为正。 系数 i j(ij)称为副系数(副位移),它是单位多余未知力 单独作用时所引起的沿 Xi方向上的位移,

    10、其值可能为正、为负或为零。据位移互等定理,有 i j= j i i P称为常数项(自由项)它是荷载单独作用时所引起 的沿Xi方向的位移。其值可能为正、为负或为零。 上述方程的组成具有规律性,故称为力法典型方程。 基本结构在全部多余 未知力和荷载共同作用下,基本结构沿多余未知力方向 上的位移,应与原结构相应的位移相等。 返返 回回 15 4. 力法典型(正则)方程系数和自由项的计算 典型方程中的各项系数和自由项,均是基本结构在 已知力作用下的位移,可以用第七章的方法计算。对于 平面结构,这些位移的计算公式为 对不同结构选取不同项计算。系数和自由项求得后, 代入典型方程即可解出各多余未知力。 返返

    11、 回回 16 85 力法的计算步骤和示例 1. 示例 P A B C I1 I2=2I1 a 2 a 2 a n=2(二次超静定) 原 选择基本结构如图示 P A C B 基 X1 X2 力法典型方程为: 11X1 计算系数和常数项,为 此作 图1M 1X1 a 图2M 1X2 a a 计算结果如下 (a) a 21X1 + 22X2+2P=0 + 12X2 +1P=0 2EI1 1 2 a2 3 2a = 6EI1 a3 2EI1 1 2 a2 a = 4EI1 a3 返返 回回 17 图1M a 图2M a a P 图 P M 2 Pa 将以上各系数代入方程(a) 并消去(a3/EI1)得

    12、 解联立方程得 多余未知力求得后其余反力、 内力的计算便是静定问题。 例如 最后内力图的绘制用叠加法 15/88Pa M图 13/88Pa P A B C 3/88Pa a MAC= a . 11 4P + a( 88 3P ) 2 Pa 返返 回回 18 2 .力法的计算步骤 (1)确定原结构的超静定次数。 (2)选择静定的基本结构(去掉多余联系, 以多余未知力代替)。 (3)写出力法典型方程。 (4)作基本结构的各单位内力图和荷载内力 图,据此计算典型方程中的系数和自由项。 (5)解算典型方程,求出各多余未知力。 (6)按叠加法作内力图。 返返 回回 19 例 41 用力法分析两端固定的梁

    13、,绘弯矩图。EI=常数。 A B L a b P 解: n=3 选取简支梁为基本结构 P X1 X2 X3 基本结构 典型方程为 11X1+ 12X2+ 13X3+1P=0 21X1+ 22X2+ 23X3+2P=0 31X1+ 32X2+ 33X3+3P=0 1 1X2 图2M 1X1 1 1X3 图1M 图3M MP图 P 3=0,故 13= 31= 23= 32= 3P=0 则典型方程第三式为 33X3=0 330(因X3的解唯一) 故 作基本结构各 和MP图 由于 X3=0 L Pab L3 bL 2 2 L bPa M图 2 2 L Pab 11X1+ 12X2+1P=0 21X1+

    14、 22X2+2P=0 由图乘法求得 代入典型方程(消去公因子)得 解得 代入典型方程解得 作弯矩图。 按式 返返 回回 20 例 42 用力法计算图示桁 架内力,设各杆EA相同。 解: n=1(一次超静定)。 0 1 2 3 4 P P 2a 2a a 选择基本结构如图示。 0 1 2 3 4 P P X1 基本结构 写出力法典型方程 11X1+1P=0 按下列公式计算系数和自由项 为此,求出基本结构的 和NP值 0 1 2 3 4 X1=1 1N 22 22 -1/2 对称 0 1 2 3 4 P P NP P 2 2 +P/2 对称 0 列表计算(见书141页)后得 EA11=(3+ )

    15、a EA1P=Pa 返返 回回 21 0 1 2 3 4 X1=1 1N 22 22 -1/2 对称 0 1 2 3 4 P P NP P 2 2 +P/2 对称 0 0 1 2 3 4 P P N 对称 代入典型方程,解得 各杆内力按式 叠加求得。 +0.414P +0.172P 例如 N03=0.7070.172P -0.707 =0.586P =0.172P 返返 回回 22 86 对称性的利用 用力法分析超静定结构,结构的超静定次数愈高, 计算工作量就愈大,主要工作量是组成(计算系数、常数 项)和解算典型方程。利用结构的对称性可使计算得到简 化。简化的原则是使尽可能多的副系数、自由项等

    16、于零。 结构的对称性: 例如: EI1 EI1 EI2 a a 对称对称 EI1 EI1 对称对称 指结构的几何形状、约束、刚度和 荷载具有对称性(正对称或反对称)。正对称简称对称。 返返 回回 23 1. 选取对称的基本结构 EI1 EI1 EI2 对 称 轴 基本结构 X1 X2 X3 多余未知力X1、X2是 正对称,X3是反对称的。 基本结构的各单位弯 矩图(见图)。 图1M 1X1 图2M 1X2 图3M 1X3 、 是正对称, 是反对称。 则 13= 31= 23= 32=0 于是, 力法典型方程简 化为 11X1+12X2+1P=0 21X1+22X2+2P=0 33X3+3P=0

    17、 下面就对称结构作进一步讨论。 返返 回回 24 (1)对称结构作用对 称荷载 a a P P P P MP图图 MP图是正对称的,故3P=0。 11X1+12X2+1P=0 21X1+22X2+2P=0 33X3+3P=0 则 X3=0 。 这表明:对称的超静定结构,在对称的荷载作用下, 只有对称的多余未知力,反对称的多余未知力必为零。 a a P P P P MP图图 (2)对称结构作用反 对称荷载 MP图是反对称的,故 1P= 2P=0 则得 X1=X2=0 这表明:对称的超静定结构,在反对称的荷载作用下, 只有反对称的多余未知力,对称的多余未知力必为零。 返返 回回 25 例 84 分

    18、析图示刚架。 10kN 10kN 6m 6m 6m 解: 这是一个对称结构,为四次 超静定。 选取对称的基本结构 如图示, X1 只有反对称多余未知力X1 基 为计算系数和自由项分别作 和MP图(见图)。 1X1 EI=常数 3 3 1M 图 (m) 10kN MP图 (kN m) 60 60 120 由图乘法可得 EI11=(1/2332) 4 +(363)2 =144 EI1P=(3630+1/23 380) 2=1800 代入力法方程 11X1+1P=0 X1= 弯矩图由 作出。 解得 返返 回回 26 这样,求解两个多余未知 力的问题就转变为求解新 的两对多余未知力的问题。 当选基本结

    19、构为时, 2. 未知力分组及荷载分组 (1)未知力分组 A B P X1 X2 P 为使副系数等于零,可采 取未知力分组的方法。 P Y1 Y1 Y2 Y2 有 X1=Y1+Y2 , X2=Y1Y2 作 、M2图。 1Y11Y1 1M图 1Y21Y2 M2图 正对称 反对称 故 12= 21=0 典型方程化简为 11Y1+1P=0 22Y2+2P=0 返返 回回 27 (2)荷载分组 当对称结构承受一般非对称荷载时,可以将荷 载分解为正、反对称的两组,分别求解然后叠加。 若取对称的基本 结构计算,在正对称 荷载作用下将只有对 称的多余未知力。 若取对称的基本结构计算,在反对称荷载作用下将 只有

    20、反对称的多余未知力。 P P 2 P 2 P 2 P 2 X1 X1 X2 X2 2 P 2 P 2 P 2 P 返返 回回 28 3.取一半结构计算 当结构承受正对称或反对称荷载时,也可以只截取结 构的一半进行计算,又称为半刚架法。下面分别就奇数跨 和偶数跨两种对称刚架进行讨论。 (1)奇数跨对称刚架 p p 对称 p 二次超静定 对称荷载 反对称荷载 p p 反对称 p 。 一次超静定 返返 回回 29 (2)偶数跨对称刚架 对称荷载 p p 对称 p 三次超静定 反对称荷载 p p I p I/2 三次超静定 p p I/2 I/2 p p I/2 I/2 C QC QC 返返 回回 3

    21、0 47 超静定结构的位移计算 上一章所述位移计算的原理和公式,对超静定结构 也是适用的,下面以85的例题予以说明。 求CB杆中点K 的竖向位移KY K P=1 P A B C I1 I2=2I1 a 2 a 2 a 原 虚拟状态如图 为了作 8/44a 3/44a 图KM 需解 算一个二次超静定问题,较为麻烦。 K 图中所示的M图 就是实际状态。 基本结构的内力和位移与原结构完全 相同,则可以在基本结构上作 。 K P=1 a/4 图KM图乘得 6/44a () 返返 回回 31 结 论 综上所述,计算超静定结构位移的步骤是: (1)解算超静定结构,求出最后内力, 此为实际状态。 (2)任选

    22、一种基本结构,加上单位力求 出虚拟状态的内力。 (3)按位移计算公式或图乘法计算所求 位移。 返返 回回 32 48 最后内力图的校核 用力法计算超静定结构,因步骤多易出错,应注意 检查。尤其是最后的内力图,是结构设计的依据,应加 以校核。校核应从两个方面进行。 1.平衡条件校核 取结构的整体或任何部分为隔离体,其受力应满足 平衡条件。 (1)弯矩图:通常检查刚结点处是否满足M=0的 平衡条件。例如 取结点E为隔离体 E MMED ED MMEB EB MMEF EF 应有 ME=MED+MEB+MEF=0 MM图图 返返 回回 33 (2)剪力图和轴力图 可取结点、杆件或结构的某一部分为隔离

    23、体,检查 是否满足 X=0和 Y=0的平衡条件。 2.位移条件校核 检查各多余联系处的位移是否与已知的实际位移相 符。对于刚架,可取基本结构的单位弯矩图与原结构的 最后弯矩图相乘,看所得位移是否与原结构的已知位移 相符。例如 图1M P P A A B B C C I I1 1 I I2 2=2I=2I1 1 a a 2 a 2 a 原 检查A支座的水 平位移 1是否 为零。 将M图与 相乘得 =0 返返 回回 34 49 温度变化时超静定结构的计算 对于超静定结构,温度变化时不但产生变形和位移, 同时产生内力。 用力法分析 超静定 结构在温度变化时产生的内力, 其原理与荷载作用下的计算相同。

    24、例如图示刚架温度发 生变化,选取基本结构(见图), t t1 1 t t1 1 t t2 2 t t3 3 t t1 1 t t1 1 t t2 2 t t3 3 X X1 1 X X2 2 X X3 3 典型方程为 11X1+12X2+13X3+1t=0 21X1+22X2+23X3+2t=0 31X1+32X2+33X3+3t=0 其中系数的计算同前, 自由项1t、 2t、 3t 分别为基本结构由于温 度变化引起的沿X1、X2 X3方向的位移。即 返返 回回 35 例46 刚架外侧温度升高25,内侧温度升高35, 绘弯矩图并求横梁中点的竖向位移。刚架EI=常数,截面 对称于形心轴,其高度h

    25、=L/10,材料的膨胀系数为。 L L + + 2525 +35+35 解: n=1 选取基本结构 X X1 1 基 + + 2525 +35+35 典型方程为: 11X1+1t=0 计算 并绘制 图 1 1 1M图 1N L L L L - -1 1 求得系数和自由项为 = 故得 = =230230 L L 返返 回回 36 按 M图 作弯矩图 求横梁中点K的位移K, 作基本结构虚拟状态的 图 并求出 ,然后计算位移 K K 1 1 KN 0 0 KM 图 L/4L/4 138138 EI/LEI/L 1/21/2 1/21/2 返返 回回 37 810 支座位移时超静定结构的计算 超静定结

    26、构当支座移动时,位移的同时将产 生内力。 对于静定结构,支座移动时将使其产生位移, 但并不产生内力。例如 A A B B C C A A B B C C 返返 回回 38 用力法分析超静定结构在支座移动时的内力,其原 理同前,唯一的区别仅在于典型方程中的自由项不同。 例如图示刚架, A A B B L a b 可建立典型方程如下: 11X1+12X2+13X3+1=0 21X1+22X2+23X3+2= 31X1+32X2+33X3+3=a A A B B X X1 1 X X2 2 X X3 3 基 式中系数的计算同前,自由项按 式(715)计算。 (715) 最后内力按下式计算 在求位移时

    27、,应加上支座移动的 影响: 返返 回回 39 例:87 两端固定的等截面梁A端发生了转角,分 析其内力。 A B L 解: n=3 选取基本结构如图, X1 X2 X3 基本结构 因 X3=0,则典型方程为 11X1+12X2+1= 21X1+22X2+2=0 绘出 图, 1 1X2 图2M 1X1 1 图1M图乘得 , , 由题意知:1t= 2t=0,将上 述结果代入方程后解得 按式 作弯矩图。 A B l EI4 l EI2 M图 返返 回回 40 411 超静定结构的特性 超静定结构与静定结构对比,具有以下一些重要特性: 1.由于存在多余联系,当结构受到荷载外其他因素 影响,如温度变化、支座移动时结构将产生内力。 2.超静定结构的内力仅由平衡条件不能全部确定, 必须考虑变形条件,因此内力与杆件的刚度有关。 3.超静定结构的多余联系被破坏后,仍能维持几何 不变,故有较强的防御能力。 4.超静定结构由于存在多余联系,一般地说要比相 应的静定结构刚度大些,内力分布也均匀些。 返返 回回

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:结构力学-8力法.PPT
    链接地址:https://www.163wenku.com/p-518594.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库