磁性流体中的一些问题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《磁性流体中的一些问题课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 磁性 流体 中的 一些 问题 课件
- 资源描述:
-
1、Disconnected-connected network transitions and phase separation driven by coevolving dynamics由耦合演化驱动的网络结构与相分离行为 Pak Ming Hui 许伯铭许伯铭 Department of PhysicsThe Chinese University of Hong Kong香港中文大学香港中文大学 物理系物理系In collaborations with:Oliver Grser 顾皓森(CUHK)Chen XU许晨(Soochow University)CCCN 2010(15-17 Oct
2、ober 2010,Suzhou)Dynamic models(SIS,SIR,opinion formation),or games(PD,SG,)NETWORKS(group dynamics)NEW FEATURES?COMPUTERSIMULATIONSTHEORIESREAL SYSTEMSCOEVOLVINGSYSTEMTwo dynamics influencing one anotherTo read more on the topic in general:Perc and Szolnoki,Biosystems 99,109(2009)Szabo and Fath,Phys
3、ics Reports 446,97(2007)Gross and Blasius,J.R.Soc.Interface 5,259(2008)Dynamic models(SIS,SIR,opinion formation),or games(PD,SG,)NETWORKS(group dynamics)NEW FEATURES?COMPUTERSIMULATIONSTHEORIESREAL SYSTEMSCOEVOLVINGSYSTEMTwo dynamics influencing one anotherThe general ideas have been applied to:Adap
4、tive epidemic models:e.g.,Gross et al.,PRL 96,208701(2006);Shaw and Schwartz,PRE 71,066101(2008)Opinion formation models:e.g.,Vazquez et al.,PRL 100,108702(2008);Nardini et al.,PRL 100,158701(2008)Wars and human conflicts:e.g.Bohorquez et al.,Nature 462,911(2009);Zhao et al.,PRL 103,148701(2009)Dyna
5、mic models(SIS,SIR,opinion formation),or games(PD,SG,)NETWORKS(group dynamics)NEW FEATURES?COMPUTERSIMULATIONSTHEORIESREAL SYSTEMSCOEVOLVINGSYSTEMTwo dynamics influencing one anotherAnd more(from PM Huis group):Modeling of guilds in online games(World of Warcraft)and LA street gangs Zhao et al.,PRE
6、79,066117(2009)Effects of social group dynamics on contagion(YouTube downloads,foreign exchange rates,flu)Zhao et al.,PRE 81,056107(2010)Co-evolving Modeling “Job Hunting Model”An agent looks for a group that he thinks he could contribute A group assess the agent to see if he can contribute to the g
7、roup After joining group,agent has a better understanding of the group and assess the group(Can I really contribute?)If agent is unhappy with the group,agent will quit!If agent feels OK with the group,he still wants to find a better group If he finds a better group,he will switch group;if not,he sta
8、ys Team formation model(agents with skills that complement each other)against kinship(buddy-buddy)modelMain Empirical Results from Data Sets:Online guilds and Offline street gangsWow Guild size distribution N(s)for all guilds in 3 servers S1,S2,S3(put together)in Oct 2005 Total players:76686Cumulati
9、ve size distributionInset:Churn vs guild sizeCumulative gang size distribution of LA Street gangs with all ethnicity put togetherTotal members:5214Small data setsSteps even in N(ss)Data from:Ducheneaut and Yee(Palo Alto Research Center)WoW Empirical data(blue)&Team-formation Modeling Results(red)Cum
10、ulative guild size distribution and Churn vs guild sizeN from data is taken as input(data in Oct 2005)N=76686N=24033N=24477N=28176Cumulative gang size distributionData(blue)and team-formation modeling results(red)Dashed line(kinship/”buddy-buddy”model)N=5214See APS News item(June 2009)http:/physics.
11、aps.org/synopsis-for/10.1103/PhysRevE.79.066117for an news item reporting our workHere,we use an adaptive snowdrift game as an example to illustrate-how coupled dynamics influence each other and explicit coupled transitions in the form of disconnected to connected network transition(structural)highl
12、y cooperative to lower cooperative population(functional)segregated phase to mixed-character phase(population characteristics)frozen to continously evolving(dynamical)-how one could approach such problems analytically-what to look at in formulating a theory and its validity-what a proper theory can
13、inform us about the properties of the system Snowdrift Game(SDG)1nTwo drivers heading home in opposite directionsnBlocked by a snowdriftnEach driver:2 actions/characters C(“cooperate”)=to shovel the snowdrift D(“not-to-operate”)OR“defect”(in prisoners dilemma language)=not to shovel vScenario:1 J.M.
14、Smith,Evolution and the Theory of Games(Cambridge Univ.Press 1982).In other contexts,the“game of chicken”.b=reward of getting homec=cost(doing the laborious job of shoveling)bc0Player 1Player 2CC,2 2ccbb|,RRD ,b bc|,TSD ,bbc|,ST ,0 0|,PPSucker payoffPlayer 2CCDDn b c 0 defines the snowdrift game It
15、follows that T R S P(defines SDG),2 2ccbb|,RR ,b bc|,TS ,bbc|,ST ,0 0|,PPPlayer 1n Showing only the payoffs of player 1:CCDDRTSP Snowdrift Game:T R S P Prisoners Dilemma:T R P S Difficult to measure payoffs accurately SDG is an alternative to PD in studying cooperation in competing populationsn Ofte
16、n,use one parameter r to represent the payoffs:T R S P(=0)1+r 1 1-r 0(0 r no incentive to make any changes Thus,dissatisfaction comes in only when opponent plays D=switch character or rewiring S=expected payoff received payoff=P(,C)-P(,D)We define a parameter,called the disappointment S,when opponen
17、t plays D asSwitching Probability P S P=SIf not switched,cut link and rewire to someone else.(Here,we take =1/2)Node-driven dynamicsCD-links AND DD-links are the active links(possible system evolution)PC,switch=r/2PD,switch=(1-r)/2PC,rewire=1-r/2PD,rewire=(1+r)/2Probabilities for the 4 adaptive even
18、ts that lead to system evolution“Dissatisfied Adaptive Snowdrift Game”(DASG)How does the level of cooperation(long time behavior)vary with r?How does dissatisfaction behavior alter network structure?Time evolution?Constructing analytic approaches?New features hinted at by theory?Initially,we have 50
19、%cooperators randomly distributed in the lattice.The results indicate two regimes with different features.What if the initial frequency of cooperators is varied?uThis figure gives us a message of the extent of cooperation.u But how the different characters connected?Definition:fC=number of C-nodes /
20、number of total nodeslCClCDlDD Initially,we have 10%cooperators randomly distributed in the lattice.The symbols show a transition behavior at some value of r.Can we obtain the features of the previous figure based on the link densities?uThis figure gives us a message of link distributions on network
21、.CDCD Definition:lxy=number of XY-links /number of total linksDisconnectedConnectedDisconnected-connected network transition accompanying a C/D phase-separated and mixed phase transitionRef:Graser,Xu,Hui,EPL 87,38003(2009)Low-r PhaseHigh-r PhaseLevel of cooperationNetwork StructureDynamicsPopulation
22、High Disconnected FrozenSegregatedLow ConnectedEvolvingMixed-characterr=0.1r=0.9fci=0.1fci=0.9(a)&(b):Initial frequency of cooperation fci=0.(c)&(d):For cost-to-benefit ratio r=0.3.More simulation results trajectories showing time evolution Definition(x-axis):NC-NDm=NTrajectory of Systems(time evolu
展开阅读全文