知识点28全等三角形2019中考真题分类汇编.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《知识点28全等三角形2019中考真题分类汇编.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 28 全等 三角形 2019 中考 分类 汇编 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 一、选择题一、选择题 1.(2019滨州)滨州)如图,在OAB 和OCD 中,OAOB,OCOD,OAOC,AOBCOD40,连接 AC,BD 交于点 M,连接 OM下列结论:ACBD;AMB40;OM 平分BOC;MO 平分 BMC其中正确的个数为( ) A4 B3 C2 D1 【答案】【答案】B 【解析】【解析】AOB=COD,AOC=BOD,又OA=OB,OC=OD,AOCBOD,AC=BD,故 正确; AOCBOD, MAO=MBO, 如图, 设 OA 与 BD 相交于 N, 又ANM=BNO, AMB= AOB=40 , 故正确; 如图, 过点 O 分别作 AC 和 BD 的垂线,
2、 垂足分别是 E, F, AOCBOD, AC=BD, OE=OF, MO 平分BMC, 故正确; 在AOC 中, OAOC, ACOOAC, AOCBOD, OAC=OBD, ACOOBM, 在OCM 和OBM 中, ACOOBM, OMC=OMB, COM BOM,故错误,所以正确故选 B 二、填空题二、填空题 16(2019 嘉兴) 嘉兴) 如图, 一副含 30和 45角的三角板ABC和EDF拼合在个平面上, 边AC与EF重合,AC12cm 当 点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动当点E从点A滑动到点C时, 点D运动的路径长为 cm;连接BD,则ABD的面
3、积最大值为 cm 2 【答案】【答案】24 12 2,36 224 3 12 6 【解析】【解析】AC12cm,A30,DEF45, BC4cm,AB8cm,EDDF6cm, 如图,当点 E 沿 AC 方向下滑时,得EDF,过点 D作 DNAC 于点 N,作 DMBC 于点 M, MDN90,且EDF90, EDNFDM,且DNEDMF90,EDDF, DNEDMF(AAS), DNDM,且 DNAC,DMCM, CD平分ACM, 即点 E 沿 AC 方向下滑时,点 D在射线 CD 上移动, 当 EDAC 时,DD值最大,最大值EDCD(126)cm, 当点 E 从点 A 滑动到点 C 时,点
4、 D 运动的路径长2(126)(2412)cm. 如图,连接 BD,AD, SADBSABC+SADCSBDC, SADBBCAC+ACDN NBCDM24+(124)DN, 当 EDAC 时,SADB有最大值, SADB最大值24+(124)6(24+3612)cm 2 故答案为: (2412) , (24+3612). 18 (20192019株洲)株洲)如图所示,在平面直角坐标系 xOy 中,在直线 x1 处放置反光镜 I,在 y 轴处放置一个有缺 口的挡板 II,缺口为线段 AB,其中点 A(0,1),点 B 在点 A 上方,且 AB1,在直线 x1 处放置一个 挡板 III,从点 O
5、 发出的光线经反光镜 I 反射后,通过缺口 AB 照射在挡板 III 上,则落在挡板 III 上的光线 的长度为 第 18 题 【答案】 3 2 【解析】如图,落在挡板 III 上的光线的长度为 MN 的长度,对应的反光镜 I 的边界点分别为点 P 和点 Q,根据光 线的折射,入射角等于反射角可得OPF=APF,从而证明APFOPF,所以 AO=2AF=2OF,AF= 1 2 ,同理AQB AQO,AB=AO=1,所以 NE=2,AQy 轴,PQ=AF= 1 2, 由题意知,AEMAQP,所以 ME=PQ= 1 2,所以 MN=NE-ME=2- 1 2= 3 2. 三、三、解答题解答题 23
6、(2019武汉,23,20 分)分)在ABC 中,ABC90 , AB n BC ,M 是 BC 上一点,连接 AM (1) 如图 1,若 n1,N 是 AB 延长线上一点,CN 与 AM 垂直,求证:BMBN (2) 过点 B 作 BPAM,P 为垂足,连接 CP 并延长交 AB 于点 Q 如图 2,若 n1,求证: CPBM PQBQ 如图 3,若 M 是 BC 的中点,直接写出 tanBPQ 的值(用含 n 的式子表示) 【解题过程】【解题过程】 (1)证明:延长)证明:延长 AM 交交 CN 于点于点 H, AM 与与 CN 垂直,垂直,ABC90 , BAMN90 ,BCNN90 ,
7、 BAMBCN n1,ABC90 , ABBC,ABCCBN ABMCBN, BMBN (2)证明:过点证明:过点 C 作作 CD/BP 交交 AB 的延长线于点的延长线于点 D,则,则 AM 与与 CD 垂直垂直 由(由(1) ,得) ,得 BMBD CD/BP, CPDB PQBQ ,即 CPBM PQBQ 1 n 提示:提示:延长 PM 到 N,使得 MNPM,易知PBMNCM,则CNMBPM90 , AB n BC ,BC2BM, 2 AB n BM ,设 PMMN1,则 PBCN2n,tanBPQtanNCP PN CN 2PM CN 2 2n 1 n 21 (2019益阳)已知,如
8、图,ABAE,ABDE,ECB=70,D=110,求证:ABCEAD. 第 21 题图 图3 图2图1 AQ B M P C P QB M A C M N B A C H 图1 M N B A C D 图2 P QB M A C N 图3 AQ B M P C 【解题过程】证明:由ECB=70得ACB=110. D=110, ACB=D. ABDE, CAB=E. 又AB=AE, ABCEAD. 19 (2019黄冈黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BFAE,DGAE,垂足分别为F, G.求证:BFDGFG. 【解题过程】【解题过程】 20(2019 安徽)安徽)
9、如图,点 E 在ABCD 内部,AFBE,DFCE. (1)求证:BCEADF; (2)设ABCD 的面积为 S,四边形 AEDF 的面积为 T,求 T S 的值. 【解题过程】【解题过程】解: (1)证明:如图 1,延长 FA 与 CB 交于点 M,ADBE, FAD=M,又AFBE,M=EBC,FAD=EBC,同理得FDA=ECB, 在BCE 和ADF 中,EBC=FAD,BC=AD,ECB=FDA, BCEADF; 4 分 E F C B A D (2)如图 2,连接 EF,由(1)知BCEADF,AF=BE,又 AFBE, 于是四边形 ABEF 为平行四边形,SAEF= SAEB,同理
10、 SDEF= SDEC, T= SAEB+ SDEC,另一方面,T= SAED+SADF= SACD+SBCE, S= SAEB+SDCE+ SAED+SBCE=2T,于是, T S =2.10 分 1.(2019乐山)乐山)如图,线段AC、BD相交于点E,DEAE ,CEBE .求证:CB. 证明:在AEB和DEC中, DEAE ,CEBE ,DECAEB AEBDEC,故CB. 2.(2019淄博)淄博)已知,在如图所示的“风筝”图案中,ABAD,ACAE,BAEDAC 求证:EC 证明:证明:BAEDAC,BAEEACDACEAC,即BACDAE.在ABC 和ADE 中, ABAD BA
11、CDAE ACAE ,ABCADE(SAS),EC 18 (20192019 浙江省温州市,浙江省温州市,1818,8 8 分)分) (本题满分 8 分) B DA C E A B C D E E F C B A 图 2 D M E F C B A 图 1 D 如图,在ABC 中,AD 是 BC 边上的中线,E 是 AB 边上一点,过点 C 作 CFAB 交 ED 的延长线于点 F (1)求证:BDECDF; (2)当 ADBC,AE=1,CF=2 时,求 AC 的长 【解题过程】【解题过程】 (1) CFAB,B=FCD,BED=F. AD 是 BC 边上的中线,BD=CD,BDECDF;
12、(2)BDECDF,BE=CF=2,AB=AE+BE=1+2=3. ADBC,BD=CD,AC=AB=3. 25(2019泰州泰州,25 题题,12 分分) 如图,线段 AB8,射线 BGAB,P 为射线 BG 上一点,以 AP 为边作正方形 APCD, 且 C、D 与点 B 在 AP 两侧,在线段 DP 取一点 E,使EAPBAP,直线 CE 与线段 AB 相交于点 F(点 F 与点 A、 B 不重合). (1)求证:AEPCEP; (2)判断 CF 与 AB 的位置关系,并说明理由; (3)求AEF 的周长. 第 25 题图 【解题过程】【解题过程】(1)四边形 APCD 正方形,DP 平
13、分APC, PCPA,APDCPD45,又因为 PEPE, AEPCEP(SAS); (2)CFAB理由如下: AEPCEP,EAPECP,EAPBAPBAPFCP,FCP+ CMP90,AMFCMP,AMF+PAB90,AFM90,CFAB; 第 25 题答图(1) (3)过点 C 作 CNPB可证得 PCNAPB,CNPBBF,PNAB, AEPCEP,AECE, AE+EF+AFCE+EF+AFBN+AFPN+PB+AFAB+CN+AFAB+BF+AF2 AB16. 第 25 题答图(2) 23 (2019 绍兴绍兴 )如图 1 是实验室中的一种摆动装置,BC 在地面上,支架 ABC 是
14、底边为 BC 的等腰直角三角 形,摆动臂长 AD 可绕点 A 旋转,摆动臂 DM 可绕点 D 旋转,AD=30,DM=10. (1)在旋转过程中: 当 A,D,M 三点在同一直线上时,求 AM 的长; 当 A,D,M 三点在同一直角三角形的顶点时,求 AM 的长. (2)若摆动臂 AD 顺时针旋转 90 ,点 D 的位置由 ABC 外的点 D1转到其内的点 D2处,连结 D1D2,如图 2, 此时AD2C=135 ,CD2=60,求 BD2的长. 【解题过程】【解题过程】 24 (2019苏州,苏州,24,8)如图,ABC 中,点 E 在 BC 边上AE=AB,将线段 AC 绕点 A 旋转到
15、AF 的位 置使得CAF=BAE.连接 EF,EF 与 AC 交于点 G. (1)求证:EF =BC;(2)若ABC=65ACB=28,求FGC 的度数 第 24 题图 【解题过程】【解题过程】 (1)证明:线段 AC 绕点 A 旋转到 AF 的位置, AC=AF, CAF=BAE. CAF+CAE=BA E+CAE. 即EAF=BAC 在ABC 和AEF 中, BAC= EAF,BAC=EAF, AC=AF, ABCAEF (SAS), EF=BC (2)解: AE=AB,AEB=ABC= 65, ABCAEF,AEF=ABC= 65, FEC=1 80 -AEB-AEF=1 80- 65-
16、65= 50, FGC 是EGC 的外角,ACB=28, FGC=FEC+ACB =50+ 28=78. 18 (2019嘉兴)嘉兴)如图,在矩形ABCD中,点E,F在对角线BD请添加一个条件,使得结论“AECF”成立, 并加以证明 【答案】【答案】见解题过程见解题过程 【解题过程】添加条件:【解题过程】添加条件:BE=DF 或或 DE=BF 或或 AE/CF 或或AEB=DFC 或或DAE=BCF 或或AED=CFB 或或 BAE=DCF 或或DCF+DAE=90等等. 证明: 在矩形证明: 在矩形 ABCD 中,中, AB/CD, AB=CD, , ABE=CDF.BE=DF, , ABE
17、CDF (SAS) , ) , AE=CF. 24 (2019 山东烟台,山东烟台,24,11 分)分) 【问题探究】【问题探究】 (1)如图 1,ABC 和DEC 均为等腰直角三角形,90ACBDCE,点 B,D 在同一直线上,连接 AD,BD 请探究 AD 与 BD 之间的位置关系: ; 若10ACBC,2DCCE,则线段 AD 的长为 【拓展延伸】【拓展延伸】 (2)如图 2, ABC 和DEC 均为直角三角形,90ACBDCE,21AC ,7BC ,3CD , 1CE ,将DEC 绕点 C 在平面内顺时针旋转,设旋转角BCD为(0360 ),作直线 BD,连 接 AD,当点 B,D,E
18、 在同一直线上时,画出图形,并求线段 AD 的长 【解题过程】【解题过程】 (1)本题的答案是)本题的答案是 A DB D 4 4 探究过程如下:探究过程如下: 因为因为ABC 和DEC 均为等腰直角三角形,90ACBDCE 所以所以CACB,CDCE,ACBBCDDCEBCD 所以所以ACDBCE, 在在ACD 与与BCE 中,中, 因为因为CACB,ACDBCE,CDCE, 所以所以ACDBCE, 所以所以CADCBE, 因为因为90ACB 所以所以90CADDABABC, 所以所以90CBEDABABC 即即90DABDBA 所以所以90ADB, 所以所以ADBD 由由可得可得ACDBC
19、E, 所以所以ADBE, 在在 RtDCE 中,由勾股定理得,中,由勾股定理得, 2222 ( 2)( 2)2DECECD, 在在 RtACD 中,由勾股定理得,中,由勾股定理得, 2222 ( 10)( 10)2 5ABACBC, 设设ADx,则,则BEx, 所以所以2BDBCDEx, 在在 RtABD 中,由勾股定理得,中,由勾股定理得, 222 ABADBD, 即即 222 (2 5)(2)xx 解得解得4x或或2x(舍去) ,(舍去) , 所以所以4AD , 即线段即线段 AD 的长为的长为 4 (2)解:情况)解:情况 1:当:当0180时,点时,点 B,D,E 在同一直线上时的图形
20、如图(在同一直线上时的图形如图(1)所示,)所示, 因为因为90ACBDCE 所以所以ACBBCDDCEBCD 所以所以ACDBCE, 因为因为 21 3 7 AC BC , 3 3 1 DC CE , 所以所以 ACDC BCCE 在在ACD 与与BCE 中,中, 因为因为 ACDC BCCE ,ACDBCE, 所以所以ACDBCE, 所以所以CADCBE,3 ADAC BEBC , 所以所以3ADBE 因为因为90ACB 所以所以90CADDABABC, 所以所以90CBEDABABC 即即90DABDBA 所以所以90ADB, 在在 RtDCE 中,由勾股定理得,中,由勾股定理得, 22
展开阅读全文