知识点48几何最值2019中考真题分类汇编.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《知识点48几何最值2019中考真题分类汇编.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 48 几何 2019 中考 分类 汇编 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 一、选择题一、选择题 12 (20192019长沙)长沙)如图,ABC 中,AB=AC=10,tanA=2,BEAC 于点 E,D 是线段 BE 上的一个动点,则 CD+ 5 5 BD 的最小值是 【 】 A2 5B4 5C5 3D10 【答案答案】B 二、填空题二、填空题 16 (2019黄冈黄冈)如图,AC,BD在AB的同侧,AC2,BD8,AB8.点M为AB的中点.若CMD120 ,则 CD的最大值是. 【答案】【答案】14 【解析】【解析】 将 CAM 沿 CM 翻折到 CAM, 将 DBM 沿 DM 翻折至 DBM, 则 AMBM, AMCAMC, DMBDMB,CMD120 ,A
2、MC+DMBAMC+DMB60 , AMB180 -(AMC+DMB+AMC+DMB)60 , AMB是等边三角形, 又又AC2,BD8,AB8.点 M 为 AB 的中点, ABAMBMAM 1 2 AB4, CAAC2, DBDB8, 又 CDCA+AB+DB2+4+814. 三、解答题三、解答题 24 (2019 山东威海,山东威海,24,12 分)分)如图,在正方形 ABCD 中,AB10cm,E 为对角线 BD 上一动点,连接 AE, CE,过 E 点作 EFAE,交直线 BC 于点 FE 点从 B 点出发,沿着 BD 方向以每秒 2cm 的速度运动,当点 E 与 点 D 重合时,运动
3、停止,设BEF 的面积为 ycm2,E 点的运动时间为 x 秒 (1)求证:CEEF; (2)求 y 与 x 之间关系的函数表达式,并写出自变量 x 的取值范围; (3)求BEF 面积的最大值 【解题过程】【解题过程】 (1)证明:过 E 作 MNAB,交 AD 于 M,交 BC 于 N, 四边形 ABCD 是正方形,ADBC,ABAD, MNAD,MNBC, AMEFNE90 NFEFEN, AEEF,AEFAEMFEN90 , AEMNFE, DBC45 ,BNE90 , BNENAM. AEMEFN(AAS). AEEF. 四边形 ABCD 是正方形, ADCD,ADECDE, DEDE
4、, ADECDE(SAS) , AECEEF. (2)在 RtBCD 中,由勾股定理得:BD10, 0x5. 由题意,得 BE2x, BNENx. 由(1)知:AEMEFN, MEFN, ABMN10,MEFN10x, 如图(1) ,当 0x 5 2 2 时, BFFNBN10 2x2x102 x. y 1 2 BFEN 1 (102 2 ) 2 2 xx2x25 2x(0x 5 2 2 ) ; 如图(2) ,当 5 2 2 x5 2时, 22 10102 2 2 2 2 BFBNFN 2x(102x)2 2x10, y 1 2 BFEN 1 (2 210) 2 2 xx2x25 2x( 5
5、2 2 x5 2). 2 2 5 2 25 2 (0); 2 5 2 25 2 (5 2). 2 xxx y xxx (1) (2) (3)y2x25x2(x 5 2 4 )2 25 4 , 20, 当 x 5 2 4 时,y 有最大值是;即BEF 面积的最大值是; 当 5 2 2 x5 2时, y2x25 2x 2 5 2 2() 4 x 25 4 , 此时 20,开口向上,对称轴为直线 x 5 2 4 , 对称轴右侧,y 随 x 的增大而增大, 当 x5 2时,y最大值50. 当 x5 2时,BEF 面积的最大值是 50. 【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三
6、角形全等的判定【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三角形全等的判定. 25 (2019 山东省威海市,题号山东省威海市,题号 25,分值,分值 12) (1)方法选择 如图,四边形ABCD是OO的内接四边形,连接AC,BD.ABBCAC. 求证:BDADCD. 小颖认为可用截长法证明:在DB上截取DMAD,连接AM 小军认为可用补短法证明:延长CD至点N,使得DNAD 请你选择一种方法证明. (2)类比探究 【探究1】如图,四边形ABCD是O的内接四边形,连接AC,BD.BC是O的直径,ABAC.试用等式表示线 段AD,BD,CD之间的数量关系,并证明你的结论. 【
7、探究2】 如图, 四边形ABCD是O的内接四边形, 连接AC, BD.若BC是O的直径, ABC30 , 则线段AD, BD,CD之间的等量关系式是. (3)拓展猜想 如图,四边形ABCD是O的内接四边形,连接AC,BD.若BC是O0的直径,BC:AC:ABa:b:c,则线段AD, BD,CD之间的等量关系式是. 【思路分析】【思路分析】 (1)选小颖的截长法,如图,在 DB 上截取 DMAD,连接 AM,由旋转全等得 BMCD,BDMDBM ADCD (2)【探究 1】数量关系为:BD2ADCD 如图,在 DB 上截取 ADAN,连接 AN,可得AND 为等腰直角三角形,ND2AD,由旋转全
8、等得 BN CD,BDNDBN2ADCD 【探究 2】数量关系为:BD2AD3CD 如图,在 DB 上截取 2ADPD,连接 AP,可得APD 为 30 的直角三角形, 由旋转相似得 BP3CD,BDPDBP2AD3CD (3)拓展猜想数量关系为:BD a b AD c b CD 图 O C A B D 图 B O C A D 图 B O C A D 图 B O C A D 如图,过 A 作 AQAD 交 BD 于 Q,连接 AQ,由旋转相似得= BQABc CDACb ,= DQBCa ADACb , BQ c b CD,BQ a b AD,BDPDBP a b AD c b CD 【解题过
9、程】【解题过程】 (1)选小颖的截长法,如图,在 DB 上截取 DMAD,连接 AM,可得AMD 为等边三角形,可证BAM CAD(SAS)得 BMCD,BDMDBMADCD (2)【探究 1】数量关系为:BD2ADCD 如图,在 DB 上截取 ADAN,连接 AN,可得AND 为等腰直角三角形,ND2AD,BANCAD, 可证BANCAD(SAS)得 BNCD,BDNDBN2ADCD 【探究 2】数量关系为:BD2AD3CD 如图,在 DB 上截取 2ADPD,连接 AP,可得APD 为 30 的直角三角形, =tan30 = 3 APAB ADAC , BAPCAD, 可证BAPCAD 得
10、 BP3CD, BDPDBP2AD3 CD 答案图 M O C B A D 答案图 N B O C A D (3)拓展猜想数量关系为:BD a b AD c b CD 如图,过 A 作 AQAD 交 BD 于 Q,连接 AQ,可得BAQCAD,ABQACD,ADQACB, BACQADBAPCAD,ADQACB = BQABc CDACb ,= DQBCa ADACb , BQ c b CD,BQ a b AD,BDPDBP a b AD c b CD 26 (2019益阳)益阳)如图,在半面直角坐标系 xOy 中,矩形 ABCD 的边 AB=4,BC=6.若不改变矩形 ABCD 的形 状和大
11、小,当形顶点 A 在 x 轴的正半轴上左右移动时,矩形的另一个顶点 D 始终在 y 轴的正半上随之上下移动. (1)当OAD=30时,求点 C 的坐标; (2)设 AD 的中点为 M,连接 OM、MC,当四边形 OMCD 的面积为 2 21 时,求 OA 的长; (3)当点 A 移动到某一位置时,点 C 到点 O 的距离有最大值,请直接写出最大值,并求此时 cosOAD 的值. 第第 26 题图题图 第第 26 题备用图题备用图 【解题过程】 (【解题过程】 (1)如图)如图 1,过点,过点 C 作作 CEy 轴,垂足为轴,垂足为 E. 答案图 P B O C A D a c b 答案图 Q
12、B O C A D 第第 26 题答图题答图 1 矩形矩形 ABCD 中,中,CDAD, CDE+ADO=90, 又又OAD+ADO=90, CDE=OAD=30. 在在 RtCED 中,中,CE= 2 1 CD=2, DE=3224 2222 CECD; 在在 RtOAD 中,中,OAD=30, OD= 2 1 AD=3. 点点 C 的坐标为的坐标为(2,323). (2)M 为为 AD 的中点,的中点, DM=3,6 DCM S. 又又 2 21 OMCD S四边形, 2 9 ODM S, 9 OAD S. 设设 OA=x,OD=y, 则则 9 2 1 36 22 xy yx , xyyx
13、2 22 , 即即0)( 2 yx, x=y. 将将 x=y 代入代入36 22 yx得得18 2 x, 解得解得23x(23不合题意,舍去不合题意,舍去), OA 的长为的长为23. (3)OC 的最大值为的最大值为 8.理由如下:理由如下: 如图如图 2, 第第 26 题答图题答图 2 M 为为 AD 的中点,的中点, OM=3,5 22 DMCDCM. OCOM+CM=8, 当当 O、M、C 三点在同一直线时,三点在同一直线时,OC 有最大值有最大值 8. 连接连接 OC,则此时,则此时 OC 与与 AD 的交点为的交点为 M,过点,过点 O 作作 ONAD,垂足为,垂足为 N. CDM
14、=ONM=90,CMD=OMN, CMDOMN, OM CM MN DM ON CD , 即即 3 534 MNON , 解得解得 5 9 MN, 5 12 ON, 5 6 MNAMAN. 在在 RtOAN 中,中, 5 56 22 ANONOA, 5 5 cos OA AN OAD. 26 (2019衡阳衡阳)如图,在等边ABC 中,AB6cm,动点 P 从点 A 出发以 cm/s 的速度沿 AB 匀速运动动点 Q 同时从点 C 出发以同样的速度沿 BC 延长线方向匀速运动当点 P 到达点 B 时,点 P、Q 同时停止运动设运 动时间为 t(s)过点 P 作 PEAC 于 E,连接 PQ 交
15、 AC 边于 D以 CQ、CE 为边作平行四边形 CQFE (1)当 t 为何值时,BPQ 为直角三角形; (2)是否存在某一时刻 t,使点 F 在ABC 的平分线上?若存在,求出 t 的值,若不存在,请说明理由; (3)求 DE 的长; (4)取线段 BC 的中点 M,连接 PM,将BPM 沿直线 PM 翻折,得BPM,连接 AB,当 t 为何值时,AB的 值最小?并求出最小值 解:(1)ABC 为等边三角形,B60 ,BPPQ,2BPBQ 即 2(6t)6t,解得 t2当 t 为 2 时,BPQ 为直角三角形; (2)存在作射线 BF,PEAC,AE0.5t四边形 CQFE 是平行四边形,
16、FQEC60.5t,BF 平分ABC,FBQBQF90 BQ2FQ,BQ6t,6t2(60.5t),解得 t3 (3)过点 P 作 PGCQ 交 AC 于点 G,则APG 是等边三角形BPPQ,EG 1 2 AGPGCQ, PGDQCD,PDGQDC,PGPACGt,PGDQCDGD 1 2 GCDE 1 2 AC3 (4)连接 AM,ABC 为等边三角形,点 M 是 BC 的中点,BM3由勾股定理,得 AM33 由折叠, 得 BM3当 A 、B、M 在同一直线上时,AB的值最小,此时 AB333. 过点 B作 BHAP 于点 H,则 cos30 AH AB ,即 3 2 2 3 33 t ,
17、解得 t933 t 为 933时,AB的值最小,最小值为 333 M F D E Q A B C P M F D E Q A B C P G M F D E Q A B C P 1.(2019重庆 A 卷)如图,在平面在角坐标系中,抛物线 yx22x3 与 x 轴交与点 A,B(点 A 在点 B 的左 侧)交 y 轴于点 C,点 D 为抛物线的顶点,对称轴与 x 轴交于点 E (1)连结 BD,点 M 是线段 BD 上一动点(点 M 不与端点 B,D 重合) ,过点 M 作 MNBD 交抛物线于点 N(点 N 在对称轴的右侧) ,过点 N 作 NHx 轴,垂足为 H,交 BD 于点 F,点 P
18、 是线段 OC 上一动点, 当 MN 取得最大值时,求 HFFP 1 3 PC 的最小值; (2)在(1)中,当 MN 取得最大值,HFFP 1 3 PC 取得小值时,把点 P 向上平移个 2 2 单位得到点 Q, 连结 AQ,把AOQ 绕点 O 顺时针旋转一定的角度(00, b0 2 b ,-b-15,所以 m 541 2 + ; 当 NHHP4,即(m2+6m5)(m5)4, 解得,m1 541 2 + ,m2 541 2 - , 因为 m0,所以 m 541 2 - . 综上所述,要使点 A,M,N,Q 为顶点的四边形是平行四边形,点 N 的横坐标为:4 或 541 2 + 或 541
19、2 - . 第 26 题答图 7.(2019淄博)淄博)如图,顶点为 M 的抛物线 yax2bx3 与 x 轴交于 A(3,0),B(1,0)两点,与 y 轴交于点 C (1)求这条抛物线对应的函数表达式; (2)问在 y 轴上是否存在点 P,使得PAM 为直角三角形?若存在,求出点 P 的坐标;若不存在,说明理由 (3)若在第一象限的抛物线下方有一动点 D,满足 DAOA,过 D 作 DGx 轴于点 G,设ADG 的内心为 I,试 求 CI 的最小值 解解:(1)将 A、B 两点坐标代入抛物线表达式,得 9330 30 ab ab ,解得 1 2 a b . xO y 备用图 图 G D C
20、 B A C BA M M I Ox y yx22x3. (2)假设存在点 P,使PAM 是直角三角形. 当点 M 为直角顶点,过 M 作 CDy 轴,过 A 作 ADx 轴,交 CD 于 D,CD 交 y 轴于 C,AMP90 , CMPAMD90,CMPMAD,又DMPCM,CPMDMA, CM AD PC MD , 1 4 2 PC ,PC 1 2 ,P1(0, 7 2 ); 当点 A 为直角顶点,过 A 作 CDx 轴,过 M 作 MDy 轴交 AD 于 D,过 P 作 PCy 轴交 CD 于 C,同上CPA DAM, PC AD AC MD , 3 4 2 AC ,AC 3 2 ,P
展开阅读全文