知识点11一元一次不等式(组)的应用2019中考真题分类汇编.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《知识点11一元一次不等式(组)的应用2019中考真题分类汇编.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 11 一元 一次 不等式 应用 2019 中考 分类 汇编 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 一、选择题一、选择题 1. (2019怀化)怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干 只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则可有一户可分得母羊但不足 3 只.这批种羊共( )只. A.55 B.72 C.83 D.89 【答案】【答案】C. 【解【解析析】设该村有 x 户,则这批种羊中母羊有(5x+17)只,根据题意可得 517710 517713 xx xx , 解得 10.5x12. x 为正整数, x=11, 这批种羊共有 11+5 11+17=83 只.
2、故选 C. 2. (2019无锡)无锡)某工厂为了要在规定期限内完成 2160 个零件的任务,于是安排 15 名工人每人每天加工 a 个 零件(a 为整数) ,开工若干天后,其中 3 人外出培训,若剩下的工人每人每天多加工 2 个零件,则不能按期完 成这次任务,由此可知 a 的值至少为 ( ) A. 10 B. 9 C. 8 D. 7 【答案】【答案】B 【解析】【解析】设原计划 m 天完成,开工 n 天后有人外出,则 15am=2160,am=144,15an+12(a+2)(m-n)2160,化 简可得:an+4am+8m-8n720,将 am=144 代入得 an+8m-8n144,an
3、+8m-8nam,a(n-m)8(n-m),其中 n-m8, 至少为 9 ,故选 B. 三、解答题三、解答题 23 (20192019 浙江省温州市,浙江省温州市,2323,1010 分)分) (本题满分 10 分) 某旅行团 32 人在景区 A 游玩,他们由成人、少年和儿童组成已知儿童 10 人,成人比少年多 12 人 (1)求该旅行团中成人与少年分别是多少人? (2)因时间充裕,该团准备让成人和少年(至少各 1 名)带领 10 名儿童去另一景区 B 游玩景区 B 的门票 价格为 100 元/张,成人全票,少年 8 折,儿童 6 折,一名成人可以免费携带一名儿童若由成人 8 人和少年 5 人
4、带队,则所需门票的总费用是多少元?若剩余经费只有 1200 元可用于购票,在不超额的前提下,最多可以 安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少 【解题过程】【解题过程】 (1)该旅行团中成人有 x 人,少年有 y 人,根据题意,得: 1032 12 xy xy ,解得 17 5 x y . 答:该旅行团中成人有 17 人,少年有 5 人; (2)成人 8 人可免费带 8 名儿童, 所需门票的总费用为:1008+1000.85+1000.6(10-8)=1320(元). 设可以安排成人 a 人、少年 b 人带队,则 1a17,1b5. 设 10a17 时,(i
5、) 当 a=10 时,10010+80b1200,b 5 2 , b最大值=2,此时 a+b=12,费用为 1160 元; (ii) 当 a=11 时,10011+80b1200,b 5 4 , b最大值=1,此时 a+b=12,费用为 1180 元; (iii) 当 a12 时,100a1200,即成人门票至少需要 1200 元,不符合题意,舍去. 设 1a10 时,(i) 当 a=9 时,1009+80b+601200,b3, b最大值=3,此时 a+b=12,费用为 1200 元; (ii) 当 a=8 时,1008+80b+6021200,b 7 2 , b最大值=3,此时 a+b=1
6、112,不符合题意,舍去; (iii) 同理,当 a8 时,a+b12,不符合题意,舍去. 综上所述,最多可以安排成人和少年共 12 人带队,有三个方案:成人 10 人、少年 2 人;成人 11 人、少年 1 人;成人 9 人、少年 3 人.其中当成人 10 人、少年 2 人时购票费用最少. 22 (2019 山东滨州,山东滨州,22,12 分)分)有甲、乙两种客车,2 辆甲种客车与 3 辆乙种客车的总载客量为 180 人,1 辆 甲种客车与 2 辆乙种客车的总载客量为 105 人 (1)请问 1 辆甲种客车与 1 辆乙种客车的载客量分别为多少人? (2) 某学校组织 240 名师生集体外出活
7、动, 拟租用甲、 乙两种客车共 6 辆, 一次将全部师生送到指定地点 若 每辆甲种客车的租金为 400 元,每辆乙种客车的租金为 280 元,请给出最节省费用的租车方案,并求出最低 费用 【解题过程】【解题过程】 解: (1)设辆甲种客车与 1 辆乙种客车的载客量分别为 a 人,b 人, 23 =180 2 =105 ab ab ,+ + ,3 分 解得 =45 =30. a b , 答:1 辆甲种客车与 1 辆乙种客车的载客量分别为 45 人和 30 人5 分 (2)设租用甲种客车 x 辆,租车费用为 y 元, 根据题意,得 y=400x+280(6x)=120x+16808 分 由 45x
8、+30(6x)240,得 x410 分 1200,y 随 x 的增大而增大,当 x 为最小值 4 时,y 值最小 即租用甲种客车 4 辆,乙种客车 2 辆,费用最低,11 分 此时,最低费用 y=120 4+1680=2160(元) 12 分 一、选择题一、选择题 9.(2019绵阳)红星商店计划用不超过 4200 元的资金,购进甲、乙两种单价分别为 60 元、100 元的商品共 50 件,据市场行情,销售甲、乙商品各一件分别可获利 10 元、20 元,两种商品均售完若所获利润大于 750 元,则该店进货方案有( ) A3 种 B4 种 C5 种 D6 种 【答案】【答案】C 【解析】【解析】
9、设该店购进甲种商品 x 件,则购进乙种商品(50x)件, 根据题意,得:60 + 100(50 ) 4200 10 + 20(50 )750 , 解得:20x25, x 为整数, x20、21、22、23、24, 该店进货方案有 5 种, 故选 C 【知识点】【知识点】一元一次不等式组的应用 三、解答题三、解答题 21.(2019遵义) 某校计划组织 240 名师生到红色教育基地开展革命传统教育活动,旅游公司有 A,B 两种客车 可供租用,A 型客车每辆载客量 45 人,B 型客车每辆载客量 30 人,若租用 4 辆 A 型客车和 3 辆 B 型客车共需费 用 10700 元;若租用 3 辆
10、A 型客车和 4 辆 B 型客车共需费用 10300 元 (1)求租用 A,B 两型客车,每辆费用分别是多少元; (2)为使 240 名师生有车坐,且租车总费用不超过 1 万元,你有几种租车方案?哪种方案最省钱? 【思路分析】 (【思路分析】 (1 1)设租用)设租用 A A 型客车的费用是型客车的费用是 x x 元,元,B B 型客车的费用是型客车的费用是 y y 元,根据题意列出二元一次方程组,可求元,根据题意列出二元一次方程组,可求 每辆车的费用每辆车的费用; (2 2)设租用)设租用 A A 型客车型客车 a a 辆,辆,B B 型客车型客车 b b 辆辆, ,由师生由师生 24024
11、0 人都有车坐,根据座位列出不等式;再由租车费用列出不人都有车坐,根据座位列出不等式;再由租车费用列出不 等式,组成不等式组,根据等式,组成不等式组,根据 a,ba,b 的值为正整数,可求出方案的值为正整数,可求出方案 【解题过程】【解题过程】解: (1)设租用 A 型客车的费用是 x 元,B 型客车的费用是 y 元,根据题意得 4x+3y=10700;3x+4y=10300, 解得,x=1700,y=1300; 答:租用 A 型客车的费用 1700 元,B 型客车的费用是 1300 元. (2)设租用 A 型客车 a 辆,B 型客车 b 辆,根据题意得 45a+30b240;1700a+13
12、00b10000; 17 b13-100 3 b2-16 a a,b 均为正整数, a=2,b=5;a=4,b=2 两种方案 当 a=2,b=5 时,费用为 99005130021700 (元) 当 a=4,b=2 时,费用为 94002130041700 (元) 答:租用 A 型客车 4 辆,B 型客车 2 辆时费用最低,最低费用为 9400 元 【知识点】【知识点】二元一次方程组,不等式组二元一次方程组,不等式组 22 (2019 福建)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩
13、大,该车间经常无法完成当 天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天 需固定成本 30 元,并且每处理一吨废水还需其他费用 8 元;将废水交给第三方企业处理,每吨需支付 12 元.根据记录,5 月 21 日,该厂产生工业废水 35 吨,共花费废水处理费 370 元. (1)求该车间的日废水处理量 m; (2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过 10 元 /吨,试计算该厂一天产生的工业废水量的范围. 【思路分析】(1)根据每天花费废水处理费 370 元,判断每天处理废水量是否 8 元,若
14、超过则需要交给第三方企 业处理,然后列式求出 m 的值; (2)分为该车间每天自己处理废水,和将废水交给第三方企业处理,两种 情况列不等式分别讨论,然后取其公共部分,即可求得该厂一天产生的工业废水量的范围. 【解题过程】解:(1)因为工厂产生工业废水 35 吨,共花费废水处理费 370 元,又 35 30370 7 68 8,所以 m 35,依题意得,30+8m +12(35m)370,解得 m20,故该车间的日废水处理量为 20 吨. (2)设一天生产废水 x 吨. 当 0x20 时,依题意得,8x+3010x,解得 x15,所以 15x20. 当 x20 时,依题意得,12(x20)+20
15、8+3010x,解得 x25,所以 20x25. 综上所述,15x25. 故该厂一天产生的工业废水量的范围在 15 吨到 25 吨之间. 【知识点】一元一次方程;一元一次不等式;反比例函数 21 (2019广东) 某校为了开展“阳光体育运动” ,计划购买篮球、足球共 60 个,已知每个篮球的价格为 70 元,每个足球的价格为 80 元. (1)若购买这两类球的总金额为 4600 元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 【思路分析】 (1)根据题意列二元一次方程组求解; (2)根据题意列出不等式求解。 【解题过程】解: (1)设篮
展开阅读全文