书签 分享 收藏 举报 版权申诉 / 61
上传文档赚钱

类型Computer-Vision-Motion--Carnegie-Mellon-Graphics-Lab:计算机视觉的运动-课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:5183119
  • 上传时间:2023-02-16
  • 格式:PPT
  • 页数:61
  • 大小:7.34MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《Computer-Vision-Motion--Carnegie-Mellon-Graphics-Lab:计算机视觉的运动-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    Computer Vision Motion Carnegie Mellon Graphics Lab 计算机 视觉 运动 课件
    资源描述:

    1、TodayDirect(pixel-based)alignment Brute Force Search Gradient Search(Motion Estimation)Lucas-KanadeFeature-based alignment Interest Points SIFT Brown&Lowe,“Recognising Panoramas”Reading:Szeliski,Sections 3 and 4Image AlignmentHow do we align two images automatically?Two broad approaches:Feature-base

    2、d alignment Find a few matching features in both images compute alignment Direct(pixel-based)alignment Search for alignment where most pixels agreeDirect Alignment The simplest approach is a brute force search(hw1)Need to define image matching functionSSD,Normalized Correlation,edge matching,etc.Sea

    3、rch over all parameters within a reasonable range:e.g.for translation:for tx=x0:step:x1,for ty=y0:step:y1,compare image1(x,y)to image2(x+tx,y+ty)end;end;Need to pick correct x0,x1 and stepWhat happens if step is too large?Direct Alignment(brute force)What if we want to search for more complicated tr

    4、ansformation,e.g.homography?for a=a0:astep:a1,for b=b0:bstep:b1,for c=c0:cstep:c1,for d=d0:dstep:d1,for e=e0:estep:e1,for f=f0:fstep:f1,for g=g0:gstep:g1,for h=h0:hstep:h1,compare image1 to H(image2)end;end;end;end;end;end;end;end;1yxihgfedcbawwywxProblems with brute forceNot realistic Search in O(N

    5、8)is problematic Not clear how to set starting/stopping value and stepWhat can we do?Use pyramid search to limit starting/stopping/step values For special cases(rotational panoramas),can reduce search slightly to O(N4):H=K1R1R2-1K2-1 (4 DOF:f and rotation)Alternative:gradient decent on the error fun

    6、ction i.e.how do I tweak my current estimate to make the SSD error go down?Can do sub-pixel accuracy BIG assumption?Images are already almost aligned(2 pixels difference!)Can improve with pyramid Same tool as in motion estimationMotion estimation:Optical flowWill start by estimating motion of each p

    7、ixel separatelyThen will consider motion of entire image Why estimate motion?Lots of uses Track object behavior Correct for camera jitter(stabilization)Align images(mosaics)3D shape reconstruction Special effectsProblem definition:optical flowHow to estimate pixel motion from image H to image I?Solv

    8、e pixel correspondence problem given a pixel in H,look for nearby pixels of the same color in IKey assumptions color constancy:a point in H looks the same in I For grayscale images,this is brightness constancy small motion:points do not move very farThis is called the optical flow problemOptical flo

    9、w constraints(grayscale images)Lets look at these constraints more closely brightness constancy:Q:whats the equation?small motion:(u and v are less than 1 pixel)suppose we take the Taylor series expansion of I:Optical flow equationCombining these two equationsIn the limit as u and v go to zero,this

    10、becomes exactOptical flow equationQ:how many unknowns and equations per pixel?Intuitively,what does this constraint mean?The component of the flow in the gradient direction is determined The component of the flow parallel to an edge is unknownThis explains the Barber Pole illusionhttp:/sandlotscienc

    11、e/Ambiguous/barberpole.htmAperture problemAperture problemSolving the aperture problemHow to get more equations for a pixel?Basic idea:impose additional constraints most common is to assume that the flow field is smooth locally one method:pretend the pixels neighbors have the same(u,v)If we use a 5x

    12、5 window,that gives us 25 equations per pixel!RGB versionHow to get more equations for a pixel?Basic idea:impose additional constraints most common is to assume that the flow field is smooth locally one method:pretend the pixels neighbors have the same(u,v)If we use a 5x5 window,that gives us 25*3 e

    13、quations per pixel!Lukas-Kanade flowProb:we have more equations than unknowns The summations are over all pixels in the K x K window This technique was first proposed by Lukas&Kanade(1981)Solution:solve least squares problemminimum least squares solution given by solution(in d)of:Conditions for solv

    14、ability Optimal(u,v)satisfies Lucas-Kanade equationWhen is This Solvable?ATA should be invertible ATA should not be too small due to noise eigenvalues l1 and l2 of ATA should not be too small ATA should be well-conditioned l1/l2 should not be too large(l1=larger eigenvalue)ATA is solvable when there

    15、 is no aperture problemLocal Patch AnalysisEdge large gradients,all the same large l1,small l2Low texture region gradients have small magnitude small l1,small l2High textured region gradients are different,large magnitudes large l1,large l2ObservationThis is a two image problem BUTCan measure sensit

    16、ivity by just looking at one of the images!This tells us which pixels are easy to track,which are hard very useful later on when we do feature tracking.Errors in Lukas-KanadeWhat are the potential causes of errors in this procedure?Suppose ATA is easily invertible Suppose there is not much noise in

    17、the imageWhen our assumptions are violated Brightness constancy is not satisfied The motion is not small A point does not move like its neighbors window size is too large what is the ideal window size?Iterative RefinementIterative Lukas-Kanade AlgorithmEstimate velocity at each pixel by solving Luca

    18、s-Kanade equationsWarp H towards I using the estimated flow field-use image warping techniques1.Repeat until convergenceRevisiting the small motion assumptionIs this motion small enough?Probably notits much larger than one pixel(2nd order terms dominate)How might we solve this problem?Reduce the res

    19、olution!image Iimage HGaussian pyramid of image HGaussian pyramid of image Iimage Iimage Hu=10 pixelsu=5 pixelsu=2.5 pixelsu=1.25 pixelsCoarse-to-fine optical flow estimationimage Iimage JGaussian pyramid of image HGaussian pyramid of image Iimage Iimage HCoarse-to-fine optical flow estimationrun it

    20、erative L-Krun iterative L-Kwarp&upsample.Beyond TranslationSo far,our patch can only translate in(u,v)What about other motion models?rotation,affine,perspectiveSame thing but need to add an appropriate Jacobian(see Table 2 in Szeliski handout):itiITTTTTTI)(JbAJI)I(JAAImage alignmentGoal:estimate si

    21、ngle(u,v)translation for entire image Easier subcase:solvable by pyramid-based Lukas-Kanade Lucas-Kanade for image alignmentPros:All pixels get used in matching Can get sub-pixel accuracy(important for good mosaicing!)Relatively fast and simpleCons:Prone to local minima Images need to be already wel

    22、l-aligned What if,instead,we extract important“features”from the image and just align these?Feature-based alignmentChoosing Features Choose only the points(“features”)that are salient,i.e.likely to be there in the other image How to find these features?windows where has two large eigenvalues Called

    23、the Harris Corner DetectorFind a few important features(aka Interest Points)Match them across two imagesCompute image transformation as per HW#2Feature DetectionFeature MatchingOne possibility:Match features found in image1 with features found in image2 e.g.SSD of image patches around each feature U

    24、se successful matches to estimate homography Do something to get rid of outliers Problems:What if the image patches for several interest points look similar?Make patch size bigger What if the image patches for the same feature look different due to scale,rotation,etc.Use Lucas-Kanade with affine mot

    25、ion model Better solution:Scale-Invariant Feature Transform(SIFT)Invariant FeaturesSchmid&Mohr 1997,Lowe 1999,Baumberg 2000,Tuytelaars&Van Gool 2000,Mikolajczyk&Schmid 2001,Brown&Lowe 2002,Matas et.al.2002,Schaffalitzky&Zisserman 2002 SIFT FeaturesInvariant Features Establish invariant frame Find op

    26、timal scale Maxima/minima of scale-space DOG x,y,s Find optimal orientation Maximum of distribution of local gradients q Form descriptor vector Histogram of smoothed local gradients 128 dimensionsSIFT features are Geometrically invariant to similarity transforms,some robustness to affine change Phot

    27、ometrically invariant to affine changes in intensityExample:Recognising PanoramasM.Brown and D.Lowe,University of British ColumbiaWhy“Recognising Panoramas”?Why“Recognising Panoramas”?1D Rotations(q)Ordering matching imagesWhy“Recognising Panoramas”?1D Rotations(q)Ordering matching imagesWhy“Recogni

    28、sing Panoramas”?1D Rotations(q)Ordering matching imagesWhy“Recognising Panoramas”?2D Rotations(q,f)Ordering matching images1D Rotations(q)Ordering matching imagesWhy“Recognising Panoramas”?1D Rotations(q)Ordering matching images 2D Rotations(q,f)Ordering matching imagesWhy“Recognising Panoramas”?1D

    29、Rotations(q)Ordering matching images 2D Rotations(q,f)Ordering matching imagesWhy“Recognising Panoramas”?OverviewFeature MatchingImage MatchingBundle AdjustmentMulti-band BlendingResultsConclusionsRANSAC for HomographyRANSAC for HomographyRANSAC for HomographyProbabilistic model for verificationFind

    30、ing the panoramasFinding the panoramasFinding the panoramasFinding the panoramasParameterise each camera by rotation and focal lengthThis gives pairwise homographiesHomography for RotationBundle AdjustmentNew images initialised with rotation,focal length of best matching imageBundle AdjustmentNew images initialised with rotation,focal length of best matching imageMulti-band BlendingBurt&Adelson 1983 Blend frequency bands over range lResults谢谢你的阅读v知识就是财富v丰富你的人生

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:Computer-Vision-Motion--Carnegie-Mellon-Graphics-Lab:计算机视觉的运动-课件.ppt
    链接地址:https://www.163wenku.com/p-5183119.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库