Computer-Vision-Motion--Carnegie-Mellon-Graphics-Lab:计算机视觉的运动-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《Computer-Vision-Motion--Carnegie-Mellon-Graphics-Lab:计算机视觉的运动-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Computer Vision Motion Carnegie Mellon Graphics Lab 计算机 视觉 运动 课件
- 资源描述:
-
1、TodayDirect(pixel-based)alignment Brute Force Search Gradient Search(Motion Estimation)Lucas-KanadeFeature-based alignment Interest Points SIFT Brown&Lowe,“Recognising Panoramas”Reading:Szeliski,Sections 3 and 4Image AlignmentHow do we align two images automatically?Two broad approaches:Feature-base
2、d alignment Find a few matching features in both images compute alignment Direct(pixel-based)alignment Search for alignment where most pixels agreeDirect Alignment The simplest approach is a brute force search(hw1)Need to define image matching functionSSD,Normalized Correlation,edge matching,etc.Sea
3、rch over all parameters within a reasonable range:e.g.for translation:for tx=x0:step:x1,for ty=y0:step:y1,compare image1(x,y)to image2(x+tx,y+ty)end;end;Need to pick correct x0,x1 and stepWhat happens if step is too large?Direct Alignment(brute force)What if we want to search for more complicated tr
4、ansformation,e.g.homography?for a=a0:astep:a1,for b=b0:bstep:b1,for c=c0:cstep:c1,for d=d0:dstep:d1,for e=e0:estep:e1,for f=f0:fstep:f1,for g=g0:gstep:g1,for h=h0:hstep:h1,compare image1 to H(image2)end;end;end;end;end;end;end;end;1yxihgfedcbawwywxProblems with brute forceNot realistic Search in O(N
5、8)is problematic Not clear how to set starting/stopping value and stepWhat can we do?Use pyramid search to limit starting/stopping/step values For special cases(rotational panoramas),can reduce search slightly to O(N4):H=K1R1R2-1K2-1 (4 DOF:f and rotation)Alternative:gradient decent on the error fun
6、ction i.e.how do I tweak my current estimate to make the SSD error go down?Can do sub-pixel accuracy BIG assumption?Images are already almost aligned(2 pixels difference!)Can improve with pyramid Same tool as in motion estimationMotion estimation:Optical flowWill start by estimating motion of each p
7、ixel separatelyThen will consider motion of entire image Why estimate motion?Lots of uses Track object behavior Correct for camera jitter(stabilization)Align images(mosaics)3D shape reconstruction Special effectsProblem definition:optical flowHow to estimate pixel motion from image H to image I?Solv
8、e pixel correspondence problem given a pixel in H,look for nearby pixels of the same color in IKey assumptions color constancy:a point in H looks the same in I For grayscale images,this is brightness constancy small motion:points do not move very farThis is called the optical flow problemOptical flo
9、w constraints(grayscale images)Lets look at these constraints more closely brightness constancy:Q:whats the equation?small motion:(u and v are less than 1 pixel)suppose we take the Taylor series expansion of I:Optical flow equationCombining these two equationsIn the limit as u and v go to zero,this
10、becomes exactOptical flow equationQ:how many unknowns and equations per pixel?Intuitively,what does this constraint mean?The component of the flow in the gradient direction is determined The component of the flow parallel to an edge is unknownThis explains the Barber Pole illusionhttp:/sandlotscienc
11、e/Ambiguous/barberpole.htmAperture problemAperture problemSolving the aperture problemHow to get more equations for a pixel?Basic idea:impose additional constraints most common is to assume that the flow field is smooth locally one method:pretend the pixels neighbors have the same(u,v)If we use a 5x
12、5 window,that gives us 25 equations per pixel!RGB versionHow to get more equations for a pixel?Basic idea:impose additional constraints most common is to assume that the flow field is smooth locally one method:pretend the pixels neighbors have the same(u,v)If we use a 5x5 window,that gives us 25*3 e
13、quations per pixel!Lukas-Kanade flowProb:we have more equations than unknowns The summations are over all pixels in the K x K window This technique was first proposed by Lukas&Kanade(1981)Solution:solve least squares problemminimum least squares solution given by solution(in d)of:Conditions for solv
14、ability Optimal(u,v)satisfies Lucas-Kanade equationWhen is This Solvable?ATA should be invertible ATA should not be too small due to noise eigenvalues l1 and l2 of ATA should not be too small ATA should be well-conditioned l1/l2 should not be too large(l1=larger eigenvalue)ATA is solvable when there
15、 is no aperture problemLocal Patch AnalysisEdge large gradients,all the same large l1,small l2Low texture region gradients have small magnitude small l1,small l2High textured region gradients are different,large magnitudes large l1,large l2ObservationThis is a two image problem BUTCan measure sensit
展开阅读全文
链接地址:https://www.163wenku.com/p-5183119.html